

APPENDIX 4-2

PEAT AND SPOIL MANAGEMENT PLAN

PECEINED: 2908 2024

Lackareagh Wind Farm Peat and Spoil Management Plan

МКО

13 August 2024

AFRY Ireland Ltd The Hyde Building The Park Carrickmines Dublin Ireland

	Provide the second s
Person responsible	Manasvi Srivastava, Liam Power
Company	AFRY Ireland Limited
Address	The Hyde Building, The Park, Carrickmines, Dublin 18, Ireiand
E-mail	manasvi.srivastava@afry.com, Liam.power@afry.com
Project Number	ICPR1267
Revision Number	REV I
Date	August 2024

Report History

<u>Repor</u>	<u>t History</u>					RECEIL	б у	
Ver.				Created	Staff	Approval	Staff	
0	Draft Issue	for Co	mments	25/03/2024	MS	25/03/2024	LP 💡	5
Ι	Updated	after	MKO	24/04/2024	MS	24/04/2024	LP	2×
	comments							

			P.C.	
C	nto	ntc		1.
			4	R.
кер	DORT H	istory		
Ι.	EXEC	JUTIVE S		
2.	STAT	EMENT (OF AUTHORITY	
3.	INTR	ODUCT	ION	
	3.1	Project	Background	
	3.2	Purpose		3
4.	GUIE	delines f	FOR PEAT MANAGEMENT	4
5.	DESK	(STUDY	AND INITIAL WALKOVER	4
	5.1	Desk St	udy	4
	5.2	AFRY Si	ite Walkovers	4
6.	FIELD	OWORKS	,	5
	6.1	Prelimin	ary Fieldworks	5
	6.2	Further	Site Investigation	5
7.	PEAT	AND SP		6
	7.1	Method	of Excavation	6
	7.2	Method	of Construction	/
		7.2.1	l urbine Bases	/
		7.2.2 7.2.2	Hardstands	/
		7.2.5	Substation and Battery Energy Storage System Compound	7 8
		7.2.1	Storage Area	8
		7.2.3	Proposed Grid Connection Route	
		7.2.4	Access Roads	
	7.3	Estimate	ed Peat and Spoil Volumes	
	7.4	Tempor	ary Management	16
	7.5	Excavati	on and Storage of Peat and Spoil	17
	7.6	Constru	iction and Reinstatement of Borrow Pit	
	7.7	Excavate	ed Peat and Spoil Management	20
	7.8	Cut and	Fill Assessment	23
		7.8.1	Assumptions for the cut and fill assessment	23
		7.8.2	Commentary on Earthworks Volume	25
8.	MON	ITORING	G PROCEDURE	26
	8.1	Peat Sta	bility Monitoring	
	8.2	Conting	ency Plan	
		8.2.1	Excessive Movement	
		8.2.2 0 7 7	Chask Parrage	
0				
ל. איס א	30MI		ND CONCLUSION	
AP		х в – PE/		
AP	PENDI	X C – GF	YOUND INVESTIGATION FACTUAL REPORT	

List of Tables

REC	
List of Tables	L.
Table 1: Summary of Trial Pit and Dynamic Probe locations	6
Table 2: General Road Construction Techniques	
Table 3: Estimated topsoil depths at main infrastructure locations	
Table 4: Estimated peat depths across access roads	
Table 5: Estimated Peat and Spoil Volumes	16
Table 6: Peat and Spoil Management Volume	
Table 7: Summary of minimum dig depths at main infrastructure locations	23
Table 8: Cut and Fill Assessment – Earthwork and Stone Volumes	24

List of Figures

Figure I: Plan Drawing of Wind Farm with Road Construction Type	11
Figure 2: Type A – New Excavate and Replace Access Road	12
Figure 3: Type B – Upgrade of Existing Excavated Access Road	13
Figure 4: Peat Depth Map	15
Figure 5: Proposed Borrow Pit – Plan and Cross-section	22

1. EXECUTIVE SUMMARY

RECEIVED AFRY Ireland ("AFRY") has been commissioned by MKO on behalf of EDF Renewables Ireland Ltd ("the Applicant") to complete a Peat & Spoil Management Plan (PSMP) as parts of an application for planning permission for the proposed Lackareagh Wind Farm in Co. Clare (the henceforth to be referred to as the 'Proposed Project').

As detailed in Section 1.1.1 of Chapter I, for the purposes of this EIAR, the various project components are described and assessed under the following references: 'Proposed Project', Proposed Wind Farm', 'Proposed Grid Connection Route' and 'the site'.

This report presents a Peat and Spoil Management Plan (PSMP) for the construction phase of the Proposed Project. It outlines excavation methodologies for peat and spoil across various infrastructure locations and details how these materials will be managed, reinstated, and deposited on-site. Additionally, it highlights construction methodologies for the proposed infrastructure types, estimated material volumes, and identifies on-site deposition areas.

From the site investigation findings carried out to date, there was no peat identified at the turbine locations T1, T2, T6, T7, the met mast and the associated access roads. While no peat was found at turbine location T5, a peat depth of 0.5m was observed along the spur road leading to T5.

The survey shows that the peat depth at turbine locations T3 and T4 is less than 0.5m, while at the temporary construction compound, it reaches a maximum recorded depth of 0.5m.

Overall, the peat depths recorded across proposed infrastructure locations ranges from 0m to 1.58m, with peat deeper than 1m observed between chainages T3+350 and T3+400.

The PSMP aims to ensure efficient peat and spoil management, environmental sustainability, and compliance with regulations throughout the construction process.

Page | I

2. STATEMENT OF AUTHORITY

AFRY Ireland (formerly Ionic Consulting) is a leading renewable energy consultary firm in Ireland, with offices in Dublin and Edinburgh. In July 2022, the business was acquired by AFRY – a Swedish-based international consultancy business who is a European leader in engineering, design, and advisory services across multiple industries, including infrastructure, energy, and construction. Presently, the AFRY Ireland team comprises over 30 staff members with diverse technical and management expertise.

AFRY Ireland is a technology agnostic renewable energy company, offering a comprehensive range of specialist services and technical advice throughout project lifecycles providing technical and project management services to support the development, preconstruction and construction of renewable technologies including solar PV, onshore wind, energy storage and offshore wind, throughout Ireland, the UK, and Europe.

AFRY Ireland has strong corporate credentials and a first-class in-house team, supported by our new colleagues from the wider AFRY family, allowing us to adapt our offering to each geography and the specifics of every project, on a case-by-case basis.

This report has been prepared by Liam Power (AFRY Senior Project Manager) and Manasvi Srivastava (AFRY Civil Engineer, M.E. Structural Engineering, BTech. Civil Engineering). Liam Power is the head of AFRY Ireland Civil Team and has over 25 years construction experience in all aspects of large civil engineering projects, with latter years focusing on project managing large scale renewable projects. Manasvi Srivastava is a Civil Engineer with AFRY Ireland and has over five years of experience in civil, structural, and geotechnical engineering.

3. INTRODUCTION

3.1 Project Background

RECEIVED. The Proposed Wind Farm is located 1km north/nortneast of the vinage of the Clare. The townlands in which the Proposed Project is located is listed in Table 1-1 in the Clare.

The Proposed Project will comprise 7 no. wind turbines, and associated foundations and hardstanding areas, access roads, underground cabling, permanent meteorological mast, temporary construction compound, peat and spoil management areas, tree felling, site drainage, operational stage signage, battery energy storage system, 38kV onsite substation and battery energy storage system (BESS) and associated underground 38kV cabling connecting to the existing Ardnacrusha 110kV Substation, and all ancillary works and apparatus.

A full description of the Proposed Project is included in Chapter 4 of the EIAR: Description of the Proposed Project.

This report details the peat and spoil management proposals to be implemented as part of the construction phase of the Proposed Project. The proposals set out in this report will ensure that all material generated as part of the construction phase of the Proposed Project is managed correctly.

3.2 Purpose

The objective of this report is to present a Peat and Spoil Management Plan (PSMP) for the construction phase of the Proposed Project. This report outlines the methodology for excavating peat and spoil at the turbine bases, hardstands, substation and battery storage compound, temporary construction compound, met mast, cable trenches, and access roads, as well as the how these materials will be managed, reinstated, and deposited on-site. The report also details the construction methodologies for the various elements as mentioned above and provides specific details regarding the construction types of the proposed road. Furthermore, it summarizes the estimated volumes and types of materials forecasted to be generated during the construction process, along with the location of on-site peat and spoil management areas.

This report also includes a monitoring procedure to track any potential peat movements on site during the construction of the Proposed Project and a contingency plan to be implemented in the case of a peat slide occurring. Although this PSMP provides some guidance on drainage measures for excavation and construction activities in the areas of peat, detailed information on drainage measures is included in Chapter 4 of this EIAR: Description of the Proposed Project, and Chapter 9 of this EIAR: Water.

This PSMP will be further developed upon a grant of planning permission and as the project progresses through the detailed design and construction phases and will form a part of the detailed Construction Environment Management Plan (CEMP).

4. GUIDELINES FOR PEAT MANAGEMENT

This report has been compiled in accordance with the following policy and best practice guidance: \sim

- Best Practice Guidelines for the Irish Wind Energy Industry (Irish Wind Energy Association, 2012);
- Wind Energy Development Guidelines (Department of Housing, Planning and Local Government, 2006);
- Draft Revised Wind Energy Development Guidelines (Department of Housing, Planning and Local Government, 2019);
- Good Practice during Windfarm Construction (Scottish Renewables, SNH, SEPA & Forestry Commission Scotland, 4th Edition 2019);
- Guidance on Developments on Peatland: Site Surveys (Scottish Government, Scottish Natural Heritage and SEPA, 2017);
- Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste (Scottish Renewables and SEPA, 2012);
- Peat Landslide Hazard and Risk Assessments. Best Practice Guide for Proposed Electricity Generation Developments (Scottish Government, 2017); and
- Developments on Peat and Off-Site Uses of Waste Peat (SEPA, 2017).

5. DESK STUDY AND INITIAL WALKOVER

5. I Desk Study

A desk study of Geological Survey Ireland (GSI) mapping and aerial mapping identified the following:

- The Proposed Project infrastructure is mainly underlain by sandstone gravel, sandstone and shale till, and bedrock outcrop with peaty surface in some areas.
- The bedrock at the Proposed Project site comprises greywacke and greywacke sandstone of Broadford Formation.
- The GSI map identifies multiple geological faults intersecting the Proposed Project site. These faults include one oriented in a west-east direction, two in a northwest-southeast direction, and two running southwest-northeast. Among these, a single southwest-northeast oriented strike fault traverses across the proposed T4 turbine foundation footprint. No faults have been identified at the remaining turbine bases, hardstands, substation and battery storage compound, or the met mast locations, or any other ancillary infrastructure.

5.2 AFRY Site Walkovers

In January 2024, AFRY carried out a site walkover across the turbine locations, the substation and battery storage compound, the met mast, and the temporary construction compound.

It was observed that turbines T1, T2, T6 and T7, and the met mast are located within open farmlands and T3 and T4 are located within active commercial forestry lands. Turbine T5, the substation and battery storage compound, the temporary construction compound and the borrow pit are located in an area of forestry which, at the time of the surveys, had been recently felled and was in early stages of regeneration.

It was noted that the site is characterized by a steep topography, with most areas covered in sod and some shallow, firm peat overlay. No ponding or soft spots were observed on the site, likely due to the presence of steep slopes which facilitate efficient drainage.

For detailed information on ground conditions and stability of peat, please refer to the Geotechnical and Peat Stability Assessment included as Appendix 8-1 within the EIAR.

Photos from the January site walkover have been included within Appendix A of this report.

6. FIELDWORKS

6. I Preliminary Fieldworks

Over 50 peat probes were carried out by MKO between April 2021 and August 2023 within the Proposed Project site. The peat probe survey has indicated that the depth of peat across the site is generally shallow, with a deeper peat pocket identified along the road leading to T3.

There was no peat identified at the turbine locations T1, T2, T6, T7, the met mast and the associated access roads. While no peat was found at turbine location T5, a peat depth of 0.5m was observed along the spur road leading to T5.

The survey shows that the peat depth at turbine locations T3 and T4 is less than 0.5m, while at the temporary construction compound, it reaches a maximum recorded depth of 0.5m.

Overall, the peat depths recorded across proposed infrastructure locations ranges from 0m to 1.58m, with peat deeper than 1m observed between chainages T3+350 and T3+400.

Results of the peat probe survey are included within Appendix B.

6.2 Further Site Investigation

The initial fieldworks were carried out in July 2022 by Causeway Geotech Limited on behalf of the Client. During this stage, trial pits were dug at three locations across the site and seven DCP tests were carried along the existing forest road to T7. Shear box testing and laboratory testing on soil and rock samples taken from trial pits were carried out.

Additional investigation works were carried out by Causeway Geotech Limited between December 2023 and January 2024 which included 14no. trial pits, 3no. rotary boreholes, 18no. heavy dynamic probes and 27no. dynamic cone penetrometers. Testing was carried out at turbine bases, hardstands, met mast, substation and battery storage compound, temporary construction compound, borrow pit and access roads. Table 1 lists the coordinates of the trial pits and dynamic probes executed at each infrastructure location. The ground investigation factual report is included within Appendix C.

Location	Trial Pit Coordinates		Dynami Coord	ic Probe linates
	Easting Northing		Easting	Northing
ті	562208.01	673986.23	562233.07	673982.35
	-	-	562232.19	673980.73
Т2	562282.26	673586.76	562298.89	673609
Т3	564007.76	673278.88	564002.85	673280.78

			4		
Location	Trial Pit C	Trial Pit Coordinates		Dynamic Probe Coordinates	
	-	-	564001.91	673281:35	
T4	563886.6	672683.32	563892.93	672675.1	
14	-	-	563892.42	672674.58	
Т5	563977.48	672336.61	564012.3	672328.75	
	-	-	564012.53	672329.04	
Тб	563314.91	672289.52	563321.11	672267.96	
	-	-	563321.75	672268.67	
	563391.33	671880.53	563493.13	671842.74	
17	-	-	563493.57	671843.18	
Met Mast	562257.48	673271.87	562262.6	673266.76	
	563610.47	672536.64	563628.39	672544.07	
Substation and BESS	563650.56	672578.40	563629.88	672544.79	
Compound	-	-	563628.36	672553.01	
	-	-	563629.85	672553.73	
	563495.49	672475.21	-	-	
D D:4	563501.42	672514.45	-	-	
Borrow Pit	563563.63	672495.96	-	-	
	563565.3	672543.35	-	-	

Table I: Summary of Trial Pit and Dynamic Probe locations

7. PEAT AND SPOIL MANAGEMENT

During the construction phase of the Proposed Project, the following activities are anticipated to generate peat and spoil:

- i. Construction of new excavated access roads (Type A)
- ii. Upgrading of existing access roads (Type B)
- Excavations in peat for turbine bases, hardstands (including blade fingers and crane pads), onsite 38kV substation, battery energy storage system, permanent meteorological mast and associated hardstanding area, temporary construction compound, borrow pit
- iv. Underground cabling trench along the Proposed Grid Connection Route

This will result in the generation of peat and spoil. While it is imperative to minimize the excavation arisings, it is acknowledged that some excess spoil and peat may still be generated. This unsuitable material typically consists of topsoil, peat, and glacial till. The management of peat and spoil during the construction activities as listed above are investigated individually in the following sections.

7.1 Method of Excavation

Excavation operations on the Proposed Project site will be carried out to facilitate the construction of turbine foundations, hardstands, substation and battery storage compound, met mast, temporary construction compound, borrow pit, cable trenches, and access roads as outlined above.

The general principles of excavation set out in this plan will be adhered to at all times during the construction phase.

7.2 Method of Construction

7.2.1 **Turbine Bases**

(FD: 29/08/202* The diameter of the turbine foundations is 23.5m. In order to safely excavate to a suitable bearing stratum, batters of the excavation will be at 45 degrees. The formation depths for the turbine foundations are assumed to be 3.5m below ground level. According to the site investigation results, it is likely that the turbine foundations will be founded on rock, as the trial pits conducted at turbine locations indicate refusal at depths less than 3.5 meters.

The assumed excavation footprint for the turbine foundation is the turbine base diameter of 23.5m plus a 1m working area all around the base i.e. 25.5m. The volume of peat generated at each turbine location will be contingent on the peat depth, which is outlined in Table 3. The formation depths assumed for the cut and fill assessment are presented in Table 8.

The estimated peat and spoil volumes likely to arise from the construction phase of the Proposed Project are presented in Table 5.

7.2.2 Hardstands

The hardstanding areas adjacent to the turbine bases will be constructed to solid subformation, either bedrock or firm silt/clay subsoil underlain by bedrock. All the peat will be excavated from the hardstand footprints and no floating type construction will be used. Hardstands will be $62m \times 30m$ in size, with two smaller tailing crane pads.

The Civil 3D model created for the hardstands geometric design was used to estimate the volume of cut and fill required to complete this element of infrastructure. This was carried out by creating a base of peat surface layer within the model, with offsets from the original ground surface layer based upon peat probe data collected from the site. The volume required to create the trapezoidal hardstand build-up with maximum batter I(v): 2(h) was then measured directly from finished hardstand level down to suitable formation i.e. base of peat.

The estimated peat and spoil volumes likely to be generated during the construction phase of the Proposed Project are presented in Table 5.

7.2.3 Substation and Battery Energy Storage System Compound

The substation and battery energy storage system (BESS) compound were modelled using Civil 3D and primarily involves the excavation to a suitable bearing stratum. As per the trial pit and peat probe data, peaty topsoil at this location varies between 0.2m to 0.4m, which is underlain by silt.

Peat and topsoil resulting from excavation works at the substation and battery storage compound may be temporarily stockpiled in the designated area to the south. This stockpiled material will be utilized to reinstate the cut and fill batters around the substation compound. It is generally considered best practice to reinstate the excavated areas as soon as practicable upon completion of the construction phase. The remaining peat and topsoil will be utilized to build a screening berm around the perimeter of the substation and battery storage compound.

The estimated peat and spoil volumes from the substation and BESS compound are presented in Table 5.

7.2.1 Temporary Construction Compound

The temporary construction compound was modelled using Civil 3D and involve the excavation to a suitable bearing stratum, which includes removal of the topsoil and peat. The peat cover ranges between 0m and 0.5m. For this formation level, the excavation will be backfilled with 600mm of granular stone fill, compacted in layers.

The estimated peat and spoil volumes from the temporary construction compound is presented in Table 5.

7.2.2 Storage Area

The storage area will be constructed to solid sub-formation, either bedrock or firm silt/clay subsoil underlain by bedrock, similar to the turbine hardstands. The storage area is $110m \times 40.5m$ in size. No peat was observed at this location.

7.2.3 **Proposed Grid Connection Route**

A 38kV underground cabling between the Proposed Wind Farm and the national electricity grid will be necessary to export the electricity generated by the Proposed Wind Farm during the operational phase. It is proposed that the Proposed Project will connect to the national grid via the Proposed Grid Connection Route, a 38kV underground cable from the proposed onsite 38kV substation to the existing 110kV Ardnacrusha Substation, Co. Clare

The Proposed Grid Connection Route is approximately 14.7km in length and is primarily located within the public road corridor.

The Proposed Grid Connection Route construction methodology, including proposals for watercourse crossings along the Proposed Grid Connection Route is described in Appendix 4-5 of the EIAR.

The Proposed Grid Connection Route underground cabling will be constructed on solid ground to EirGrid/ESB specifications. Any surplus material arisings generated during the construction of the Proposed Grid Connection Route will be disposed of in a nearby licenced waste facility and/or managed on site.

7.2.4 Access Roads

All proposed access tracks (including new and existing roads across the site) will be constructed to solid sub-formation. For excavations in peat and spoil, side slopes will be no greater than I(v): 2(h). This slope inclination will be reviewed during construction, as appropriate. Where areas of weaker peat are encountered, then slacker slopes of I(v): 3(h) or less will be constructed.

The Civil 3D model created for the roads geometric design was used to estimate the volume of engineering fill required to complete these access roads. This was carried out by creating a base of peat surface layer within the model, with offsets from the original ground surface layer based upon peat probing carried out across the site. The volume required to create the trapezoidal road build-up with maximum batter 1:2 is then measured directly from finished road level down to solid i.e. base of peat.

The road construction preliminary design has taken into account the following key factors:

(1) Buildability considerations

(2) Serviceability requirements for construction and wind turbine delivery and · 29/08/202* maintenance vehicles

(3) Minimise excavation arisings

(4) Requirement to minimise disruption to peat hydrology

The preliminary road construction types proposed for the Proposed Project site are summarised in Table 2.

It is to be noted that this report does not include a detailed design for the access roads on the Proposed Project. This report includes the most suitable type of road construction envisaged for each section of access road based on the ground conditions recorded during the site walkovers and site investigation results. The detailed design process will occur prior to construction commencing.

i. Construction of new excavated roads - Type A

In order to facilitate the Proposed Project, it is estimated that approximately 3.9km of new excavated access tracks will be required to be constructed. The existing roads account for approximately 67% of the total length of roads required to access the site.

These roadways will be constructed through excavation and the removal of organic material and soft subsoil to achieve a suitable formation level. A layer of geogrid or geotextile material will be laid at the formation level to separate the road building material from the subsoil. Subsequently, 450mm of granular fill material, such as Class 6F2 stone, will then be placed and compacted in layers, as specified by the detailed designer. The road will then be finished with a 150mm layer of Cl. 804 capping material.

The finished road will have a running width of 5m, with wider sections on bends and passing bays, which us detailed fully in Appendix 4-1 of this EIAR. Access road construction will be to the line and level requirements as per design/planning conditions.

A section of a new excavated road is also shown in Figure 2.

Upgrade of existing roads – Type B ii.

In order to facilitate the Proposed Project, it is proposed to utilise 2.5km of existing roads, 1.9km of which is the L7080 Local Road ('the Gap Road'), and the remaining are farm tracks. During the site survey conducted by AFRY, it was observed that the existing gap road is in relatively good condition. Upgrading of these existing tracks will likely involve both widening and resurfacing works. It is assumed that widening will typically take place on both sides of the road. However, in areas of steeper slopes, widening of existing tracks will take place on the upslope side of the road. A detailed view of the proposed road upgrade works on the L7080 Local Road can be found in Appendix 4-1 of this EIAR.

The existing roads will be widened through excavation and the removal of organic material and soft subsoil to achieve a suitable formation level. The new section of the road will be constructed by placing a 450mm of granular fill material, such as Class 6F2 stone, and compacting it in layers on top of a layer of geogrid or geotextile, depending on site conditions and as specified by the detailed designer. This road construction will be similar in build up to the construction of excavate and replace type access road. The increased

road width and the existing road surface, where necessary, will be capped with a 150mm layer of Clause 804 material.

The finished road width will have a running width of 5m, with wider sections on bends and passing bays. Access road construction will be to the line and level requirements RONA per design/planning conditions and outlined in Appendix 4-1.

Construction	Construction	Ground Conditions		Comment
Method	Туре	Typical	Typical	
		Peat	Slope	
		Depth	Inclination	
Construction of new excavate and replace access roads	Туре А	<2.0m	Varies	New access road construction technique envisaged for various locations on site (to be confirmed by designer at the detailed design stage) – Figure 2
Upgrade of existing excavated access roads	Туре В	<2.0m	Varies	Upgradation of existing excavated access road to the required width and finished with a layer of selected granular fill (to be confirmed by designer at the detailed design stage) – Figure 3

A section of existing excavated road for upgrade is shown in Figure 2

Table 2: General Road Construction Techniques

7.3 Estimated Peat and Spoil Volumes

As part of the site work carried out on the Proposed Project site, over 50 peat probes have been undertaken to date. Trial pits were also excavated at each turbine base location, the proposed met mast location, the substation and battery storage compound, and the borrow pit location. Although the peat probe survey and GSI mapping indicated no presence of peat at T1, T2, T5, T6, T7, the met mast, the substation and battery storage compound, and the borrow pit, trial pits revealed the presence of peaty topsoil ranging from 0.1m to 0.4m in depth.

The results of the peat probe survey and trial pit investigations allow for the classification of peat depths across the Proposed Project site into appropriate bands. Three depth classifications were established; 0m to 0.5m, 0.5m to 1m and greater than 1.5m. The maximum peat depth recorded on site, 1.58m, was observed along the road to T3 between chainages T3+350 and T3+400.

The Proposed Project layout has been superimposed upon this indicative peat depth map to estimate peat depth at a particular location and is shown in Figure 4. The peat depths at main infrastructure locations and across the access roads are listed in Table 3 and Table 4 below.

Site Location	Organic Strata	Organic Strata Depth
ТІ	Topsoil	0.2m
Т2	Topsoil	0.2m
Т3	Topsoil	0.35m
Τ4	Peaty topsoil	0.4m
Т5	Topsoil	0.2m
Т6	Topsoil	0.2m
Т7	Topsoil	0.1m
Met Mast	Topsoil	0.2m
Substation and BESS Compound	Peaty topsoil	0.2m - 0.25m
Borrow Pit	Peaty topsoil	0.2m - 0.4m

Table 3: Estimated to	opsoil depths at	main infrastructure	locations
-----------------------	------------------	---------------------	-----------

Site Location	Peat Depths
Spur to TI	0m
Spur to T2	0m
Road to Met Mast	0m
Spur to T4	0m - 0.40m
Т3 - Т4	0.30m - 1.58m
Spur to T5	0m - 0.50m
Spur to T6	0m - 0.10m
Т6 - Т7	0.30m - 0.60m

Table 4: Estimated peat depths across access roads

The quantity of peat and spoil material, requiring management on site has been calculated based on the cut and fill assessment and is shown in Table 5 below.

Location	Description	Estimated Peat/Topsoil Volume (m ³)	Estimated Spoil Volume (m ³)	Ś.
7 no. turbine bases and hardstands	25.5m diameter excavation footprint for turbine foundation (23.5m turbine diameter plus 1m working area all around) with 62m x 30m hardstand areas	20,597	114,195	`Q ₅
Met Mast	Area 25m x 15m	242	173	
Substation and BESS Compound	Area 85m x 60m	2,225	13,340	
Temporary construction compound	Area 80m x 50m approx.	966	0	
Setdown Area	110m x 40.5m	2,363	1,150	
Access Roads	Assumed 5m running surface with 6.8m wide development footprint	13,179	14,375	
Borrow Pit	50m x 50m	I,438	5,750	
Total		41,010	148,983	

Note I: Assumptions used in calculation of the above volumes are detailed in Section 7.8 of this report.

Note 2: A contingency factor of 15% has been applied to excavated spoil volumes, and a bulking factor of 15% has been used for excavated peat volumes to allow for expected increase in volume upon excavation and to allow for a variation in ground conditions across the site.

Note 3: Refer to table included in Section 7.8 of this report for details on cut and fill.

Table 5: Estimated Peat and Spoil Volumes

A summary of peat and spoil management volumes is presented in Table 6.

7.4 Temporary Management

To manage the material arisings effectively, the following points outline specific guidelines and practices for their temporary management and handling on-site:

- The amount of peat and spoil necessary for landscaping, reinstatement and backfilling shall be stored locally at turbine hardstands, in distinct stockpiles. Any surplus material will be promptly transported to the proposed borrow pit shown on Figure 5.
- Before stockpiling any glacial till spoil, the proposed deposition area would be stripped of topsoil/ peat which would be removed and placed in a suitable area to prevent the mixing of materials and facilitate reuse during restoration work.
- Peat will be stored on top of existing and undisturbed peat areas located only on the uphill slopes to ensure stability. The suitability of the underlying peat and the topography will be reviewed by a geotechnical engineer at the detailed design

stage and during the construction phase. This will determine the maximum height of peat that maybe stored, which shall not exceed 1.5m.

- Glacial till will not be placed on top of peat or topsoil; instead, it will be deposited only on other glacial till material.
- In order to prevent erosion and surface water contamination, silt fencing can be utilized to secure these stockpiles, where necessary.
- The excavated material which is unsuitable for use in construction will not be spread over any existing heath, bog, or grassed areas.
- Following the reinstatement of the turbine bases and hardstands, all temporarily stockpiled material not required will be removed and transported to the proposed borrow pit.
- The proposed locations for the temporary stockpiling of peat and spoil will be confirmed by the geotechnical engineer at detailed design stage.

7.5 Excavation and Storage of Peat and Spoil

As previously discussed in Section 6, the depth of peat present on the site is shallow. Trial pit findings indicate that peat is limited to the topsoil layer and is present as peaty topsoil across the site. Following a cut and fill assessment, it has been determined that approximately 41,010m³ of topsoil will be generated on-site. Of the c. 41,010m³, c. 30,000m³ is proposed to be utilized for reinstatement purposes across the site.

During the construction process, the shallow peat overburden and topsoil will be stripped and temporarily stockpiled locally at the hardstands, around the substation compound, and around the storage area for it to be re-used for reinstatement. Any surplus peat, topsoil and the subsoil material underlying the peat will be excavated and promptly transported to the borrow pit.

An interceptor drain will first be excavated upslope of the temporary stockpiling areas in order to intercept existing overland flows and divert them around this area prior to discharge via a buffer zone on the downslope side. The stockpile will be sealed, and a perimeter drain installed to intercept any run-off so that it can be discharged through an appropriately designed silt trap.

A summary of peat/topsoil and spoil management volume is presented in Table 6.

			<i>Ŷ</i> ∧	
Location	Peat/Topsoil Volume (m³)	Spoil Volume (m ³)	Comment	
Borrow Pit	11,010	5,240	See Figure LKRH d014 bl for further details	
Reinstatement and landscaping	30,000	-	Peat and topsoil to be utilized for reinstatement purposes across the site.	202
Reuse of material around excavated turbine base and for ballast	-	4,000	Excavated area around the turbine bases to be backfilled with surplus spoil material after construction of the foundation	
Reuse of material as fill volume	-	- I40,760 Surplus suitable cut volume to be utilized as fill material for hardstands, access roads, met mast, temporary construction compound and storage area and to backfill batter areas		
Total Volume	41,010 m ³	150,000 m ³		

Note I: Peat and topsoil generated at the substation and battery storage compound will be used to reinstate the cut and fill batters surrounding the substation compound. Any remaining material will be utilized to construct a screening berm along the perimeter of the substation and battery storage compound.

Table 6: Peat and Spoil Management Volume

7.6 Construction and Reinstatement of Borrow Pit

The borrow pit location is shown on Figure 1. Within the development footprint of the borrow pit, the peaty topsoil has a depth of up to 0.5m. It is proposed that approximately 15,000 cubic meters of suitable material be extracted from the borrow pit, out of which, it is estimated that roughly 10,000 cubic meters of rock can be obtained.

Following the extraction of rock from the borrow pit, it is proposed to reinstate the area using excavated peat and spoil. The extracted rock shall be employed in the construction of various wind farm infrastructure elements, including turbine foundations, hardstands, and access roads. The contractor excavating the rock will be required to ensure the development of the borrow pit in a manner that facilitates safe and secure deposition of excavated peat and spoil. It is proposed to construct dedicated cells within the borrow pit for the placement of these materials. This is to allow for the safe placement and grading of the peat and spoil using dumper trucks and excavators. Design and construction guidelines for the borrow pit are provided in the subsequent paragraphs.

Prior to stripping of peaty topsoil, a cut-off drain will first be excavated upslope of the borrow pit, as shown on Figure 5, in order to intercept existing overland flows and divert them around the borrow pit prior to discharge via a buffer zone on the downslope side. The shallow peat overburden will then be stripped and temporarily stockpiled; vegetated-side upwards where possible, forming a berm around the borrow pit in order for it to be re-used in its reinstatement on completion. Any subsoil material overlying the rock will

then be excavated and stockpiled separately from the peat. The stockpile will be sealed, and a perimeter drain installed to intercept any run-off so that it can be discharged through an appropriately designed silt trap.

To effectively manage potential effects from borrow pit activities, a series of open drams will be constructed within the area to isolate runoff containing increased concentrations of suspended solids. The drainage system, comprised of check dams, will attenuate the flow and provide additional storage capacity during exceptional rainfall events. This design will prevent contaminated runoff from mixing with clean catchment runoff.

Settlement ponds will be implemented as an additional mitigation measure. These ponds have been designed with a modular approach to accommodate varying runoff volumes. In the event that larger areas of runoff need to be treated at a single discharge point, the size of the settlement pond can be increased proportionately.

Borrow pit extraction will be closely monitored and inspected by a geotechnical engineer to ensure proper management and safety. The contractor will assess work practices and suspend operations during periods of heavy rainfall to minimize excessive runoff. Extraction methods will be determined based on rock quality, with excavators utilizing various attachments for efficient stone removal. In some cases, blasting may be recommended as a safer alternative to rock breaking.

It is proposed to construct the borrow pit so that its base level is below the level of the adjacent section of access road. As excavation progresses into the back edge of the borrow pit, the base of the borrow pit may be raised to suit local conditions. Localised deepening of the borrow pit floor may be required depending on extraction operations.

Various excavator sizes will be employed for extraction, with larger excavators removing rock from the excavation face and floor and smaller excavators assisting with rock removal, stockpiling, and loading. The excavation sides will be sloped at an angle determined by the rock type, with regular geotechnical inspections ensuring stability and safety.

Public access to the borrow pit will be restricted, and secure fencing, edge protection, and warning signs will be installed around the perimeter. Additionally, a berm will be constructed at the leading edge to ensure safe distances are maintained between articulated dumper trucks and the borrow pit during loading operations.

Upon completion of extraction activities at the borrow pit, the excavated area will be utilized for the long-term storage of peat and spoil material generated during the construction of turbine bases, hardstands, access roads, 38kV substation and BESS compound, and storage area, ensuring efficient and responsible use of the site resources.

Following the reinstatement of the borrow pit, the surface of the deposited materials will be profiled to a maximum gradient of 5% to ensure stability and promote revegetation. The area will be revegetated with harvested turves, where feasible, or allowed to regenerate naturally under the guidance of the project ecologist. Consistent monitoring of the deposition areas will be necessary throughout the construction process, with particular attention given during periods of wet weather or snowmelt, to identify and address any potential indicators of peat instability in a timely manner.

7.7 Excavated Peat and Spoil Management

Following the reinstatement of the turbine bases and hardstands, all surplus material shall be transported and disposed at the proposed borrow pit. No permanent stockpiles of peat or spoil will be left anywhere on site after completion of the construction works?

The excess peaty topsoil for reinstatement or landscaping purposes will be managed in a manner that prevents any significant or negative environmental effect and avoids causing pollution in nearby surface waterbodies due to erosion or surface runoff. Excess peat will also be used to level out gradients near the turbine bases, hardstands and access tracks as well as infill depressions left exposed by the construction works.

Implementing the following general control measures during the construction phase at the Proposed Project site will aid in minimizing the risks associated with peat instability:

- 1. Excavated spoil will not be deposited on the downslope or upslope edges of adjacent peat soils.
- 2. The sides within excavated peat will be sloped back at an angle of 30 degrees to the horizontal to prevent slippage.
- 3. Temporary deposition of excavated soils will only be allowed in areas with peat depth less than 0.5m.
- 4. Materials will not be stockpiled, and heavy machinery will not be parked on peat surfaces.
- 5. Low ground bearing pressure machines will be used on areas of peat exceeding Im depth.
- 6. Machinery use on peat surfaces will be minimized. The use of vibrating rollers may not be permitted on peat surfaces, particularly on steep slopes.
- 7. The length and duration of unsupported excavations in peat will be minimized.
- 8. Existing drainage patterns in peat will be maintained whenever possible, and any uncontrolled discharges of water onto peat will be prevented.
- 9. Upslope cut-off drains must be installed in advance of construction activities to prevent water build up in excavations.
- 10. Deposition of excavated material will not occur outside designated areas; temporary stock piling will take place within the development footprint of turbine hardstands before reinstatement and disposal at proposed deposition areas.
- 11. Any excavations will be immediately backfilled with suitable material when available.
- 12. Regular inspections of all slopes will be carried out to monitor the development of tension cracks.
- 13. A qualified geotechnical and/or environmental engineer will conduct regular site visits and assessments to monitor the potential for a peat slide regularly during construction.
- 14. Upon commencement of the reinstatement works, guidance from a suitably qualified environmental professional will be sought to confirm the methodology and programme.
- 15. Exclusion zones delineating the working corridor will be established around all working areas using post and rope fences. No activity will be permitted past this fence.
- 16. The environmental manager or other designated person will conduct induction training and toolbox talks with site staff to explain the risks associated with

working on peat and with, the procedures for reducing the risk of peat slides, and the location of exclusion zones.

- 17. Strict adherence to method statements is required at all times, and any deviation from the agreed work methodology must be approved by a suitably qualitied environmental professional or the site geotechnical engineer in advance of the works commencing.
- 18. Particular attention will be paid to conditions during and after heavy rainstorms, especially following extended dry periods when the likelihood of peat movement is higher. The site supervisor will suspend work if either work practices or weather conditions are deemed unsafe.

After reinstatement is completed, the borrow pit site will be re-vegetated using the topsoil, sod or harvested peat.

17.3m	
STATION COMPOUND	
183	
TING GROUND P LAYER OF MATERIAL (0.5m) TO STOCKPILED AND USED FOR	
NSTATEMENT	
DPOSED LEVEL OF	
CAVATION	
LACKAREAGH WIND FARM	
BORROW PIT LAYOUT AND CROSS SECTIONS	REVISION
Plotted - 12/08/2024 17:03:59 Figure 5 X13-BUIEDublinProjects/Ireland/Lackareagh LKRHiDrawings/d014 Borrow Pit Details/LKRH D014.1 Borrow Pit Design Plan And Sections	

7.8 Cut and Fill Assessment

AFRY carried out an earthworks assessment for the site that quantifies the overall volume of cut and fill required for the construction of the Proposed Project. The cut and fill assessment is presented on the drawings included in Appendix 4-1 of the EIAR: Site Layout Drawings.

7.8.1 Assumptions for the cut and fill assessment

- The assumed excavation footprint for the turbine foundation is the turbine base diameter of 23.5m plus 1m working area all around the base i.e. 25.5m.
- Typical hardstand requirements from turbine suppliers were assumed for the cut & fill assessment i.e. hardstand area for main crane measuring 62m x 30m.
- The assumed width of the access tracks is 5m.
- Typical gradient requirements from turbine suppliers were assumed for the cut & fill assessment i.e. maximum gradients of 16%.
- A I (v): 2(h) slope for all excavation faces was assumed for the cut & fill assessment.
- The assumed minimum dig depths for the cut and fill assessment at main infrastructure locations are presented in the below.

Location	Minimum Dig Depth (bgl)		
TI hardstand	0.2m		
T2 hardstand	0.2m		
T3 hardstand	0.35m		
T4 hardstand	0.4m		
T5 hardstand	0.2m		
T6 hardstand	0.2m		
T7 hardstand	0.1m		
Met Mast	0.2m		
Temporary Construction Compound	0.3m		
Substation and BESS Compound	0.4m		
Storage Area	0.3m		

Table 7: Summary of minimum dig depths at main infrastructure locations

The results of the cut and fill earthworks assessment include the following:

- Site plan drawings showing the extent of cut & fill earthworks at all infrastructure locations across the entire site.
- A summary of cut and fill earthwork volumes provided in the table below.

A summary of excavated cut and fill volumes calculated for the Proposed Project site are given in Table 8.

			RECEIL		
Location	Description	Estimated Peat/Topsoil Volume (m³)	Estimated Spoil (Re- usable Material) Volume (m³)	Fill Volume (m ³)	Stone Requirements (m ³)
TI	25.5m diameter excavation footprint for turbine foundation (23.5m turbine diameter plus 1m working area all around) with 62m x 30m hardstand areas	20,597	9,373	١,500	1,750
T2			16,675	3,500	2350
Т3			5,060	5,500	1800
T4			863	32,200	1900
T5			4,543	15,100	1800
T6			26,105	8,200	1600
T7			51,578	2,650	2350
Met Mast	Area 25m x 15m	242	173	250	230
Substation and BESS Compound	Area 85m x 60m	2,225	13,340	3,000	2650
Temporary Construction Compound	Areas 80m x 50m and	966	0	15,250	1200
Storage Area	Area 90m x 25m	2,363	1,150	7,500	3050
Access Roads	Area 110m x 40.5m	13,179	14,375	31,450	10,950
Borrow Pit	Area 50m x 50m	I,438	5,750	0	0
Total		41,010	148,983	126,100	31,630

Table 8: Cut and Fill Assessment – Earthwork and Stone Volumes

7.8.2 Commentary on Earthworks Volume

It is to be noted that the earthwork volumes given in Table 8 above are indicative and for information purposes only and subject to detailed design. This section of the report should be read in conjunction with Sections 7.3, 7.5 and 7.6 of the report which summarise the peat and spoil volumes for site and the deposition area on site. (POPA

In summary:

- 1) The total volume of peat/topsoil requiring management on site is estimated at 35,660m³. After applying a bulking factor of 15%, this volume estimates to 41,010m3. A major volume of this material, 30,000m3, will be used for reinstatement purposes and landscaping across the site. The remaining volume will be deposited in the borrow pit.
- 2) The total volume of spoil generated on site is estimated at 129,550m³. After applying a contingency factor of 15%, this volume estimates to 148,983m³. Trial pit assessments confirm its suitability for reuse as fill material. Therefore, a significant volume, 140,760m³, of this spoil will be utilized as fill material for hardstands, access roads, met mast, temporary construction compound and storage area. About 4,000m³ of spoil will be used to backfill the excavated areas around the turbine bases and the remaining will be deposited in the borrow pit.
- 3) A contingency factor of 15% has already been applied to spoil volumes to allow for a variation in ground conditions.
- 4) A bulking factor of 15% has already been applied to the generated peat volumes to allow for expected bulking upon excavation and to allow for a variation in ground conditions.

8. MONITORING PROCEDURE

8. | Peat Stability Monitoring

PECEINED. The preliminary site investigation has not identified any areas with a risk of peat instability. In the event that the detailed site investigation during the design stage reveals such areas the following monitoring procedure, adopted from plans for wind farms in similar soil conditions, will be implemented:

To monitor possible peat movements, it is proposed to install sighting posts upslope and downslope of the access roads at staggered intervals at locations where the peat depth is greater than 2m for excavated access roads. Additional monitoring locations will be required at infrastructure locations with deeper peat deposits. The sightlines are to consist of the following:

- A line of wooden stakes (typically I to I.5m long) placed vertically into the peat • to form a straight line.
- Each set of sighting line shall comprise 6 no. posts at 5m centres that is a line 25m • long.
- A string line shall be attached to the first and last posts and all intervening posts shall be adjusted so they are just touching the string line.
- Lines of sighting posts shall be placed across the existing slope about 5m away from the area to be worked. The posts will be located along the road at 10m intervals in areas of deep peat (say greater than 1m). Where there are relatively steeper slopes or softer ground a sighting line shall be placed down the slope, or at any location where monitoring would be deemed useful.
- Each line of sighting posts shall be uniquely referenced with each post in the line given a reference. The post reference shall be marked on each post (e.g. reference I-I, I-2, I-3, I-4, I-5, and I-6 for posts in line I).
- The sighting lines shall be monitored at the beginning of each working day, and during the day where considered appropriate (e.g. when working activity is concentrated at a specific location or after each critical step in the construction process).
- Monitoring of the posts will comprise sighting along the line and recording any • relative movement of posts from the string line.
- Where increased movements are recorded, the frequency of monitoring will be increased.
- A monitoring record will be kept of the date, time and relative movement of each post, if any. This record shall be updated and stored as a spreadsheet.

8.2 Contingency Plan

The following contingency plan has been adopted from plans for wind farms with similar soil conditions.

8.2.I **Excessive Movement**

Where there is excessive movement or continuing peat movement recorded at a monitoring location or identified at any location within the site but no apparent signs of distress to the peat (e.g. cracking, surface rippling etc.) then the following shall be carried out:

- i. All activities (if any) will cease within the affected area.
- ii. Increased monitoring at the location will be carried out. The area will be monitored, as appropriate, until such time as movements have ceased.
- iii. Re-commencement of activities shall only start following a cessation of movement and agreement with all parties (geotechnical engineer, contractor and client).

8.2.2 Onset of Peat Slide

Where there is the onset or actual detachment of peat (e.g. cracking, surface rippling etc.) then the following shall be carried out:

- i. On alert of a peat slide incident, all activities (if any) in the area will cease and all available resources will be diverted to assist in the required mitigation procedures.
- ii. Action will be taken to prevent a peat slide reaching any watercourse by constructing check barrages on land.. Due to the terrain and the inability to predict locations of potential peat slides, it may not be possible to implement any on-land prevention measures, in this case a watercourse check barrage will be implemented.
- All relevant authorities (i.e. Clare County Council, Inland Fisheries Ireland and National Parks and Wildlife Service) should be notified if a peat slide event occurs on site.
- iv. For localised peat slides that do not represent a risk to any surface watercourse and have essentially come to rest, the area will be stabilised initially by rock infill, if required. The failed area and surrounding area will then be assessed by the engineering staff and stabilisation procedures implemented. A monitoring regime will be put in place which will be decided by the geotechnical engineer based on the site conditions.
- v. The area will be monitored, as necessary, until any observed movements have ceased, with the duration to be determined by the geotechnical engineer based on site conditions and stability assessment.

8.2.3 Check Barrage

Whilst it is not anticipated that a peat slide will occur on site, as a contingency a check barrage procedure is included below.

Check barrages are constructed in order to prevent any peat arising from a peat slide entering into surface watercourses. The most effective method of preventing any peat slide debris from travelling downstream in a watercourse is the use of a check barrage. A check barrage comprises the placement of rock fill across a watercourse. The check barrage is a highly permeable construction that will allow the passage of water but will prevent peat debris from passing through. Rock fill would comprise well-graded coarse rock pieces from about 300mm up to typically 1000mm.

The rock fill for the check barrage will be sourced as close as possible to the site. A stockpile of material will be available as a contingency measure prior to construction work commencing. The size of the barrage will vary depending on the scale of the peat debris to be contained and the geometry of the watercourse at the barrage location. In general due to the low speed of a peat slide there is little impact force and most of the lateral load is due to fluid pressure on the upslope face of the barrage.

Typically, the check barrage will fill the entire channel width of the watercourse up to a height of 3 to 4m with a crest width of typically 2m and side slopes of about 45 degrees depending on the geometry of the barrage location. 20/

The check barrage construction procedure is as follows:

- i. Access to the check barrage location shall be along the existing access roads on the wind farm site and/or along public roads, where possible. When it is necessary to form the barrage then rock fill will be placed across the watercourse to effectively block the passage of peat debris.
- ii. Operatives employed to carry out the construction of the check barrage will be inducted by means of a briefing by on-site supervisors as to the proposed location of the check barrage.
- iii. The check barrage provides containment for peat debris in the unlikely event of a peat slide. Further remedial measures may be required and will be assessed by all parties and carried out as soon as is safe to do so when the location and extent of the failure is established.
- Where a barrage was constructed as a precaution and no peat debris reached the iv. watercourse then the barrage will be removed as soon as is agreed with all parties.

9. SUMMARY AND CONCLUSION

Observations from site walkovers indicate that the topography of the site is relatively steep. The findings of the site investigation data suggest favourable subsoil conditions and shallow peat depths across the site. The ground conditions at this site present several opportunities to reduce the extent of excavation and/or increase re-use opportunities as good practice measures. These include:

- reduction of dig depth required for site infrastructure.
- reducing the extent of excavation of the new access tracks by using less intrusive methods to achieve a sufficient degree of levelling.
- maximization of suitable excavated materials for engineering fill and landscaping purposes.
- appropriate utilization of excavated material for track verge reinstatement and profiling.

While several opportunities for excavated material reuse exist, it is acknowledged that some volume of material generated during the construction process will necessitate onsite management. Therefore, a range of strategies for peat and spoil management across the Proposed Project site have been identified, including deposition within the designated borrow pit, reuse as fill material and ballast, landscaping and reinstatement. The proposal aims to either reuse or deposit the excavated material locally at its point of origin, thereby mitigating the effect of long-haul transportation routes.

To summarize, the total volume of peat and spoil requiring management on site is estimated to be approximately 189,993m³. This peat and spoil will be managed within the Proposed Project site, with 144,760m³ for reuse as outlined above, 16,250m³ to be deposited within the borrow pit, and 30,000m³ to be used for landscaping and reinstatement.

Photo 1: End of the storage area looking downhill

Photo 2: On storage area platform looking up at T5

Photo 3: Storage area platform

Photo 4: At the storage area looking down the gap road

Photo 6: Access road to T5

APPENDIX B – PEAT PROBE RESULTS

B - PEAT PROBE RESULTS X(ITM) Y(ITM) Peat Depth (m) 563541 671766 1 563549 671630 0.6 563556 672091 0.1 5636360 671883 0.3 563559 671540 0.4 563559 671514 0.4 563570 671807 0.7 563915 672807 0.7 563776 672925 0.9 563762 672944 1.58 563869 672830 0.5 563747 672963 0.4 563745 672963 0.4 563756 672951 1.57 563747 672967 1.56 563747 672807 0.7 563688 672806 1.54 563699 672897 0.5 563793 671691 0.3 564457 671716 3 564457 671716 3 564459 672037 0.7 564378 672481 0.5	YRY			~
X(ITM)Y(ITM)Peat Depth (m)56354167176615635496716300.656355496716300.15636366720910.15636366718830.35636506715400.45637276716550.4563596715140.4563596715140.45636076714770.45639156728070.756391567280015637626729441.585638696728300.55638346728610.65637476729630.45637566729511.575637476728661.545636986728000.75636986728061.545636996728770.55637936716910.35643486717421.525644576718230.35641696720370.75641696720370.75641696720370.75642006719481563782672430.35643786724630.6563782672430.35637936724630.65637826723730.35637936724370.3	3 – PEA	T PROB	E RESULTS	NECETIC
563541 671766 1 563549 671630 0.6 563556 672091 0.1 563636 671883 0.3 563557 671540 0.4 563727 671655 0.4 563559 671514 0.4 563501 672807 0.7 563915 672807 0.7 563762 672925 0.9 563762 672944 1.58 56384 672830 0.5 563834 672861 0.6 563745 672951 1.57 563745 672967 1.56 563709 672806 1.54 563689 672807 0.5 563793 671691 0.3 563870 67182 0.5 563793 671716 3 564169 672037 0.7 56475 67182 0.5 563793 671691 0.3 563793 671691 0.3 564169 672037 0.7 <th>X(ITM)</th> <th>Y(ITM)</th> <th>Peat Depth (m)</th> <th>N.</th>	X(ITM)	Y(ITM)	Peat Depth (m)	N.
563549 671630 0.6 563556 672091 0.1 563636 671883 0.3 563636 671883 0.3 563650 671540 0.4 56377 671655 0.4 56359 671514 0.4 563570 671477 0.4 563915 672807 0.7 563762 672925 0.9 563762 672830 0.5 56384 672800 1 563762 67291 1.58 56384 672963 0.4 563745 672967 1.56 563747 672967 1.56 563745 672967 1.56 563709 672846 0.2 563679 672897 0.5 563793 671691 0.3 564376 671716 3 564457 671716 3 564169 672037 0.7 564120	563541	671766		20
563556 672091 0.1 56366 671883 0.3 563650 671540 0.4 563727 671655 0.4 56359 671514 0.4 56359 67177 0.4 56359 671477 0.4 563915 672807 0.7 563915 672800 1 563762 672925 0.9 563763 672830 0.5 56384 672810 0.6 563747 672966 1.55 563745 672971 1.56 563746 672951 1.57 563747 672967 1.56 563709 672897 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564169 672037 0.7 5641	563549	671630	0.6	· · · · · · · · · · · · · · · · · · ·
563636 671883 0.3 563636 671883 0.3 563650 671540 0.4 563727 671655 0.4 56359 671514 0.4 56359 671477 0.4 563951 672807 0.7 563915 672800 1 563762 672925 0.9 563762 672925 0.9 563762 672925 0.9 563764 672925 0.9 563765 672925 0.9 56384 672830 0.5 56384 672830 0.5 563745 672961 1.55 563746 672951 1.57 563764 67206 1.54 563687 673002 0.7 563687 671691 0.3 564373 67162 0.5 564379 671682 0.5 564370 671642 0.5 5643	563556	672091	0.1	No.
563650 671540 0.4 563727 671655 0.4 563727 671655 0.4 56359 671514 0.4 563607 671477 0.4 563915 672807 0.7 563915 672807 0.7 563762 672925 0.9 563762 672944 1.58 563869 672830 0.5 56384 672964 1.55 563745 672951 1.57 563746 672951 1.57 563747 672967 1.56 563798 672897 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671823 0.3 564169 672037 0.7 564120 671948 1 563855 671823 0.3 564260 671948 1 <td< td=""><td>563636</td><td>671883</td><td>0.3</td><td></td></td<>	563636	671883	0.3	
563727 671655 0.4 563579 671514 0.4 563607 671477 0.4 563915 672807 0.7 563915 672800 1 563776 672925 0.9 563762 672830 0.5 56384 672830 0.5 56384 672810 0.4 563762 672914 1.58 563844 672861 0.6 563745 672963 0.4 563756 672951 1.57 563747 672967 1.56 563798 672897 0.5 563698 672897 0.5 563793 671691 0.3 564386 671742 1.52 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3	563650	671540	0.4	
563559 671514 0.4 563607 671477 0.4 563915 672807 0.7 563915 672800 1 563762 672925 0.9 563762 672944 1.58 563849 672830 0.5 563834 672861 0.6 563747 672966 1.55 563745 672963 0.4 563766 672951 1.57 563745 672967 1.56 563709 672846 0.2 563698 672806 1.54 563699 672897 0.5 563793 671691 0.3 564348 671742 1.52 564457 67182 0.5 564348 671742 1.52 564457 671823 0.3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3	563727	671655	0.4	
563607 671477 0.4 563951 672807 0.7 563915 672800 1 563776 672925 0.9 563762 672944 1.58 563869 672830 0.5 563834 672861 0.6 563747 672966 1.55 563745 672951 1.57 563766 672951 1.57 563747 672967 1.56 563709 672846 0.2 563698 672800 1.54 563699 672897 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 67182 0.3 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 <	563559	671514	0.4	
563951 672807 0.7 563915 672800 1 563776 672925 0.9 563762 672944 1.58 563869 672830 0.5 563834 672861 0.6 563745 672963 0.4 563745 672963 0.4 563745 672967 1.56 563747 672967 1.56 563798 672806 1.54 563698 672897 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563902 672373 0.3	563607	671477	0.4	
563915672800I5637766729250.95637626729441.585638696728300.55638346728610.65637476729661.555637456729530.45637566729511.575637476729671.565637996728460.25636986728061.545636996728770.55637936716910.35638706716820.55643486717421.5256445767171635641696720370.756426067194815638556724810.55637826724630.65639026723730.35637326727270.3	563951	672807	0.7	
5637766729250.95637626729441.585638696728300.55638346728610.65637476729661.555637456729530.45637566729511.575637476729671.565637996728460.25636986728061.545636796718970.55637936716910.35638706716820.55643486717421.5256445767171635641696720370.75642606718230.35638556724810.55637826724630.65639026723730.35637326727270.3	563915	672800	1	
5637626729441.585638696728300.55638346728610.65637476729661.555637456729530.45637566729511.575637476729671.565637996728460.25636986728061.545636996728970.55637936716910.35638706716820.55641696720370.75641206721050.25642556718230.356426067194815638556724810.55637826724630.65639026723730.35637326727270.3	563776	672925	0.9	
5638696728300.55638346728610.65637476729661.555637456729630.45637566729511.575637476729671.565637096728460.25636986728061.545636986728970.55637936716910.35638706716820.556415767171635641696720370.75642606718230.35642556718230.356426067194815638556724810.55637926723730.35639026723730.35637326727270.3	563762	672944	1.58	
5638346728610.65637476729661.555637456729630.45637566729511.575637476729671.565637096728460.25636986728061.545636976728970.55637936716910.35638706716820.55644576717421.5256445767171635641696720370.75642556718230.35638556724810.5563782672630.6563966672370.25637826724630.6563966672370.35637026723730.35637826724720.3	563869	672830	0.5	
5637476729661.555637456729630.45637566729511.575637476729671.565637096728460.25636986728061.545636976728970.55637936716910.35638706716820.556445767171635641696720370.75642506718230.35643556718230.35638556724810.55637926729370.756426067194815638556724810.55637826724330.35639026723730.35637326727270.3	563834	672861	0.6	
5637456729630.45637566729511.575637476729671.565637096728460.25636986728061.545636986728061.545636976730020.75636996728970.55637936716910.35638706716820.55643486717421.5256445767171635641696720370.75642506718230.35638556724810.55637826724630.65639666722320.25639026723730.35637326727270.3	563747	672966	1.55	
563756 672951 1.57 563747 672967 1.56 563709 672846 0.2 563698 672806 1.54 563697 673002 0.7 563699 672897 0.5 563793 671691 0.3 563870 671682 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563782 672481 0.5 563782 672463 0.6 563902 672373 0.3 563703 672727 0.3	563745	672963	0.4	
5637476729671.565637096728460.25636986728061.545636986728070.75636996728970.55637936716910.35638706716820.55644576717421.5256445767171635641206721050.25642556718230.35638556724810.55637826724630.65639026723730.35637326727270.3	563756	672951	1.57	
5637096728460.25636986728061.545636986730020.75636996728970.55637936716910.35638706716820.55643486717421.5256445767171635641696720370.75642556718230.35638556724810.55637826724630.6563902672370.35637326727270.3	563747	672967	1.56	
563698 672806 1.54 563687 673002 0.7 563699 672897 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563902 672373 0.3 563732 672727 0.3	563709	672846	0.2	
563687 673002 0.7 563699 672897 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563902 672373 0.3 563732 672727 0.3	563698	672806	1.54	
563699 672897 0.5 563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 563855 672481 0.5 563782 672463 0.6 563902 672373 0.3 563732 672727 0.3	563687	673002	0.7	
563793 671691 0.3 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 563855 672481 0.5 563782 672463 0.6 563902 672373 0.3 563732 672727 0.3	563699	672897	0.5	
563870 671682 0.5 563870 671682 0.5 564348 671742 1.52 564457 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563902 672373 0.3 563732 672727 0.3	563793	671691	0.3	
564348 671742 1.52 564357 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563966 672232 0.2 563902 672373 0.3 563732 672727 0.3	563870	671682	0.5	
564457 671716 3 564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563902 672373 0.3 563732 672727 0.3	564348	671742	1.52	
564169 672037 0.7 564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563966 67232 0.2 563732 672727 0.3	564457	671716	3	
564120 672105 0.2 564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563966 67232 0.2 563902 672727 0.3	564169	672037	0.7	
564255 671823 0.3 564260 671948 1 563855 672481 0.5 563782 672463 0.6 563966 672232 0.2 563902 672373 0.3 563732 672727 0.3	564120	672105	0.2	
564260 671948 I 563855 672481 0.5 563782 672463 0.6 563966 672232 0.2 563902 672373 0.3 563732 672727 0.3	564255	671823	0.3	
563855 672481 0.5 563782 672463 0.6 563966 672232 0.2 563902 672373 0.3 563732 672727 0.3	564260	671948		
563782 672463 0.6 563966 672232 0.2 563902 672373 0.3 563732 672727 0.3	563855	672481	0.5	
563966 672232 0.2 563902 672373 0.3 563732 672727 0.3	563782	672463	0.6	
563902 672373 0.3 563732 672727 0.3	563966	672232	0.2	
563732 672727 0.3	563902	672373	0.3	
	563732	672727	0.3	
563747 672694 0.2	563747	672694	0.2	
563707 672784 1.53	563707	672784	1.53	
563708 672785 0.4	563708	672785	0.4	
563471 672233 0	563471	672233	0	

563485	672156	0.2
563747	672646	0.4
563528	672573	0.4
563500	672562	0.2
563454	672548	0.2
563446	672540	0.2
563448	672541	0.3
563447	672519	0.3
563451	672510	0.2
563502	672546	0.2
563638	672616	0.3
563692	672449	0.5
563665	672432	0.5
564123	672367	0
564084	672369	0
564053	672371	0
564087	672370	0
563655	672490	0.4
563634	672475	0.5
564014	673300	0.3
562322	673188	0
563857	672847	0.6
563820	672752	0.3
563867	672751	0.4
563833	672740	0.3
563664	672553	0
563720	672497	0
563271	671817	0

RECEIVED. 29/08/2024

APPENDIX C - GROUND INVESTIGATION FACTUAL

Lackareagh Wind Farm – Ground Investigation

Causeway Geotech Ltd

8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL +44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

istered in Northern Ireland. Company Number: NI610766 Approved: ISO 9001 • ISO 14001 • OHSAS 18001

CONTENTS

Document Control Sheet

RECEIVED. Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTH	IORITY
2	SCOP	E4
3	DESC	RIPTION OF SITE4
4	SITE	OPERATIONS
	4.1	Summary of site works
	4.2	Boreholes5
	4.3	Dynamic probes
	4.4	Standpipe installations
	4.5	Trial Pits
	4.6	Indirect CBR tests (DCP)6
	4.7	Surveying7
5	LABC	PRATORY WORK
	5.1	Geotechnical laboratory testing of soils7
	5.2	Geotechnical laboratory testing of rock7
6	GROU	JND CONDITIONS
	6.1	General geology of the area8
	6.2	Ground types encountered during investigation of the site
	6.3	Groundwater
7	REFE	RENCES

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Core photographs
Appendix D	Dynamic probe logs
Appendix E	Trial pit logs
Appendix F	Trial pit photographs
Appendix G	Indirect in-situ CBR test results
Appendix H	Geotechnical laboratory test results
Appendix I	SPT hammer energy measurement report

Document Control Sheet

Document Control Sheet				RECEIL	, ()	
Report No.:		23-1870			. 790er	
Project Title:		Lackareagh W	/ind Farm, Co. Clare	e – Ground Inves	tigation \overrightarrow{V}	
Client:		МКО	МКО			
Client's Representative:		AFRY				
Revision:	A00	Status:	Final for issue	Issue Date:	21 st March 2024	
Prepared by:		Reviewed by:		Approved by:		
fimill		Mart		Chatte	Chaque Dem	
Carin Cornwall BSc MSc PhD		Matthew Gilb MEarthSci FG	ert S	Matthew Grah BEng(Hons) M	am IIEI	

The works were conducted in accordance with:

UK Specification for Ground Investigation 2nd Edition, published by ICE Publishing (2012)

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS
Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground 29/1 Investigation.

Abbreviations used	on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
Р	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
SB	Sonic bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa.V: undisturbed vane shear strengthVR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
\bigtriangledown	Water strike: initial depth of strike.
▼	Water strike: depth water rose to.
Abbreviations relating t	o rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Lackareagh Wind Farm, Co. Clare

1 **AUTHORITY**

PECENTED. 2900 On the instructions of AFRY Consulting Engineers, ("the Client's Representative"), acting on the whalf of MKO ("the Client"), a ground investigation was undertaken at the above location to provide geotectical and environmental information for input to the design and construction of a proposed wind farm.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 **SCOPE**

The extent of the investigation, as instructed by the Client's Representative, included boreholes, trial pits, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 **DESCRIPTION OF SITE**

As shown on the site location plan in Appendix A, the works were conducted on the proposed site of Lackareagh Wind Farm, located in the townlands of Shannaknock and Killeagy in County Clare. The site includes forestry and farmland. It is bordered by forested land to the east, and fields to the north, south, and west. Kilbane village is located immediately west of the site.

SITE OPERATIONS

4.1 Summary of site works

PECEINED: 29 Site operations, which were conducted between 11th December 2023 and 29th January 2024, comprised:

- three boreholes by rotary drilling
- a standpipe installation in one borehole
- eighteen dynamic probes •
- fourteen machine dug trial pits
- indirect CBR tests at twenty-seven locations.

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, and as shown on the exploratory hole location plan in Appendix A.

4.2 **Boreholes**

Three boreholes (RC-SC-01 – RC-SC-03) were put to their completion by rotary drilling techniques only. The boreholes were completed using a low ground bearing tracked Comacchio 405 drilling rig.

Symmetrix-cased full hole rotary percussive drilling techniques were employed to advance the boreholes to bedrock, after which rotary coring was employed to recover core samples of the bedrock. SPTs were carried out at standard intervals throughout the overburden, with small and bulk disturbed samples obtained where possible through the soil strata.

The core was extracted in up to 1.5m lengths using a metric T2-101 core barrel, which produced core of nominal 84mm diameter, and was placed in triple channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with BS 5930: 2015+A1:2020: *Code of practice for ground investigations.*

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.3 Dynamic probes

Eighteen dynamic probes were conducted using the DPSHB method as described in B5 EN ISO 22476-3:2005+A1:2011. The method entails a 63.5kg hammer falling 0.75m onto a 50.5mm diameter cone with an apex angle of 90°.

Appendix D provides the dynamic probe logs in the form of plots, against depth, of the number of blowsper 100mm penetration.

4.4 Standpipe installations

A groundwater monitoring standpipe was installed in borehole RC-SC-02.

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.5 Trial Pits

Fourteen trial pits (TP-MM-01, TP-SC-01 – TP-SC-06, and TP-T1-01 – TP-T7-01) were excavated using a 13t tracked excavator fitted with a 600mm wide bucket, to depths of 1.20-3.40m.

Disturbed (small jar and bulk bag) samples were taken at standard depth intervals and at change of strata.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix E presents the trial pit logs with photographs of the pits and arising provided in Appendix F.

4.6 Indirect CBR tests (DCP)

An indirect CBR test was conducted at twenty-seven locations (DCP01-DCP27) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, and is discussed in Highways England CS229 (2020) which refers to the methodology described in TRL Overseas Road Note 18 (1999).

The test results are presented in Appendix G in the form of plots of the variation with depth of the penetration per blow. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, which is taken from TRRL Overseas Road Note 8 (1990), *A user's manual for a program to analyse dynamic cone penetrometer data*.

Log CBR = 2.48-1.057 Log (mm/blow)

The frequently elevated CBR values are a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

4.7 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- soil chemistry: pH and water soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS* 1377, *Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix H.

5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

Test	Test carried out in accordance with
Point load index	ISRM Suggested Methods (1985) Suggested method for determining point-load
	strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60
Uniaxial	ISRM Suggested Methods (1981) Suggested method for determining
compression	deformability of rock materials in uniaxial compression, Part 2
strength tests	and

ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods for rock characterization, testing and monitoring, 2007 · 29/08/102*

The test results are presented in Appendix H.

6 **GROUND CONDITIONS**

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise glacial till. These deposits are underlain by greywacke of the Broadford Formation and potentially red conglomerate, sandstone, and mudstone of the Old Red Sandstone.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: encountered typically in 200-400mm thickness, occasionally with peat. •
- Glacial Till: sandy gravelly silty clay, frequently with low cobble content and occasional beds of gravel, typically soft or firm in upper horizons, becoming stiff at depth.
- Bedrock (Greywacke): Rockhead was encountered at depths ranging from 2.20-2.50m.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered as seepage in trial pits TP-SC-01, TP-SC-02, TP-SC-04, TP-SC-06, and TP-T7-01 at 0.40-2.30m.

Groundwater was not noted during drilling at any of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out any groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

It should also be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Seasonal variation in groundwater levels should be factored into design considerations.

7 **REFERENCES**

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.

APPENDIX A

SITE AND EXPLORATORY HOLE LOCATION PLANS

PRUJECI:	Lackareagh Wind	Farm, Co.Clare		Exploratory hole
CLIENT:	МКО	KEY: TP-SC-06 RC-SC-01	CALISE	SCALE: NTS@A3
engineer:	FRY	 ♦ DCP-20 ♦ DP-SC-02 	GEC	CHCK: MFG

	and the second se
	the second se
	and the second se
	1 1 1
	1 2 1
	10 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
	13 m
	1100
	al and the
	an
05/02/20	24
1 OF 6	23-1870 EHL-01

PROJECT: Lackar	eagh Wind Farm, Co.Clare	TITLE:	Exploratory ho	۶le
GLIENT: MKO	KEY: TP-SC-06 RC-SC-01	CALISEW	SCALE: NTS@A3	
engineer: AFRY	 ♦ RC-SC-01 ♦ DCP-20 ♦ DP-SC-02 	GEOTE	CH DRWN: JD GHGK: MFG	s

C-02 RC-SC-01 SC-02 RC-SC-01 TP-SC-04 DCP-1 D	1 1 1 1 1 1 1 1 1 1
	<u> </u>
	AI I
05/02/20)24
SERIES: 3 OF 6	DWG ND: 23-1870 EHL-03

	Lackareagh	Wind Farm, Co.Clare		Exploratory h	ole
CLIENT:	МКО	KEY: TP-SC-06		SCALE: NTS@A3	D
ENGINEER:	AFRY		GEOTE	CH DRWN: JD	51

22	
(F.D. 29/06	
	No.
	1000
	COTA .
	10 March
840	
e layout pla	an
DATE: 05/02/20	024
GERIES: 4 OF 6	DWG ND: 23-1870 EHL-04

		P.DCP.27	Recently Brand Drand Drand
PROJECT: Lackareagh Wind	Farm, Co.Clare	TITLE:	Exploratory hole layout plan
GLIENT: MKO ENGINEER: AFRY	KEY: ■ TP-SC-06 ● RC-SC-01 ● DCP-20 ● DP-SC-02	CAUSEWAY GEOTECH	SGALE: DATE: NTS@A3 05/02/2024 DRWN: JD SERIES: GHGK: MFG 6 OF 6

APPENDIX B BOREHOLE LOGS

								Pro	ject No.	Project Name: Lackareagh Wind Farm	Borehole ID		
		CAUS	E			Y		23	-1870	Client: MKO	RC-SC-01		
			BEC		EC	Η				Client's Rep: AFRY			
Met Rotary I	hod Drilling	Plant I Comacch	Jsed)5	Top 0.	(m) 00	Base (3.00	n) Coo	rdinates	Final Depth: 5.20 m Start Date: 29/01/2024 Driller: TA	Sheet 1 of 1 Scale: 1:40		
Rotary	Rotary Coring Comacchio 405 3.00		5.20	563	530.12 E								
				1		1	Castan I M	6723	502.61 N	Elevation: 257.39 mOD End Date: 29/01/2024 Logges; IG	FINAL		
(m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Depth De (m) (i	n) Level mOD		Legend Description Dark brown peaty TOPSOIL.	Backfill		
1.20 1.20 - 1.64	D1 SPT(C) 5	50 (6,7/50						256.8	3 - 0.50 	 Soft brown slightly sandy slightly gravelly SILT. Sand is fine to coarse. Gravel is subangular fine to coarse. Stiff brown slightly sandy gravelly CLAY with medium cobble and boulder content. Sand is fine to coarse. Gravel is subangular fine to coarse. 	0.5		
	for 285r Hamme	nm) r SN = 1377							- - - - - - - -		1.5		
2.50 - 2.80	SPT(C) 5 for 155r Hamme	60 (7,9/50 mm) er SN = 1377						254.8	3 - 2.50	Weathered GREYWACKE (recovered through percussive drilling as grey angular gravel).	2.5		
			100	100	90		-	254.3	3 - 3.00 - - - - - -	Medium strong massive grey fine grained well cemented GREYWACKE with widely spaced veins of white calcite. Moderately weathered: slightly closer fracture spacing and strong orangish brown discolouration penetrating up to 30mm from joint surfaces. Discontinuities: 1. 0 to 20 degree joints, widely spaced (230/640/1250), planar,	3.0		
4.00			100	100	100	4				smooth with orangish brown staining on joint surfaces. 2. 50 to 70 degree joints, medium spaced (360/550/720), planar, smooth with orangish brown staining on joint surfaces.	4.0 4.5 		
5.20								252.1	- - - 3 - 5.20	End of Borehole at 5 20m			
									- - - - -		5.5		
											6.0 — — — 6.5 —		
									- - -		7.0		
			105	805	BOT				-				
	Water	Strikes		SCR	RQD	ema	rks						
Struck at (m) Casing To (m)	Casing to (m Details Diam (mm) Time (min)	Rose Barro	e to (r	<u>n)</u> Ir	nspec	tion pit	hand dug t	o 1.20m				
		Flush		e	Т	ermi	nation	Reason		Last Upd	ated 🔳 🖬 🖿		
Flush Type Termination Re Air Mist Terminated at sci								scheduled	depth.	21/03/20	D24 AGS		

2									Proje	ct No.	Project	Name: Lackarea	agh Wind Fa	rm			Bor	ehol	e ID
		CAUS	E			Y			23-2	L870	Client:	МКО					RC	-SC-	02
	X				EC		1				Client's	Rep: AFRY	1		1				
Rotary I	hod Drilling	Plant Comacch	Jsed nio 40	sed Top (m) Base (0 405 0.00 3.50			p (m) Base (m) 0.00 3.50		Coord	linates	Final De	epth: 6.00 m	Start Date:	25/01/2024	Driller: T	Ā	She Sca	et 1 o ale: 1	of 1 :40
Rotary	Coring	Comacch	nio 40)5	3.	50	6.0	0	56360 67251	8.35 E .3.49 N	Elevatio	n: 266.60 mOD	End Date:	25/01/2024	Logger: T	ſG	F	INA	L
Depth	Sample	s / Field Records	TCR	SCR	RQD	FI	Casing Depth	Water Depth	Level	Depth	Legend		Desc	ription		9	ater	ackfill	
(m)							(m)	(m)	mOD	(m) -		Dark brown peaty T	OPSOIL.	·		00	<u>></u>		× –
									266.20	- 0.40		<u> </u>					्नु	•	500
										-		Soft brown slightly Gravel is subangula	sandy slightly r fine to coarse	gravelly SILI. Sai e.	nd is fine to c	coarse.			0.5 —
									265.80	- 0.80		Stiff brown sandy sa	andy gravelly S	ILT with mediun	n cobble and				-
1 20	D1						1 20			-		subrounded fine to	coarse.	barse. Gravel is s	ubangular to)			1.0 -
1.20 - 1.62	SPT(S) for 275	50 (6,7/50 mm)								-	**** ****						•	•	-
	Hamm	er SN = 1377								-								Ē	• 1.5 — • • •
										-									- -
										-	× × × × × × ×								-
2.50 - 2.81	SPT(S)	50 (7,8/50					2.50		264.10	- 2.50	× × × × × × × ×								2.5
	for 156 Hamm	mm) er SN = 1377								-		grey angular gravel	ACKE (recover).	ed through perc	ussive drilling	g as			
									263.60	- - 3.00	· · · · · · · · · · · · · · · · · · ·	Madium strong (loc	ally strong) m	assive grov fine (Trained well				3.0
										-		cemented GREYWA	CKE. Highly we	eathered: reduce	ed strength, i own staining	much un to			· -
										-		40mm from joint su	irfaces.		5	up to			3.5 —
						14				-		Discontinuities: 1. 0 to 30 degree jo	ints, closely sp	aced (50/80/23	0), planar, sm	nooth			· -
			100	65	20					_		with orangish brow 2. 40 to 65 degree j	n staining on j oints, medium	oint surfaces. spaced (70/220)/330), plana	ır,			4.0
						>20				-		smooth with orange 3. 2 no. 70 to 90 de	ish brown stair gree joints at 4 sting, smooth y	1.60-4.90m and with orangish brain the second se	faces. 5.60-5.85m,	planar			-
4.50										-		joint surfaces.	iting, shooth i		own stanning	011			4.5 -
										-									
			100	95	80					-									5.0 -
						10				-									· -
5.50										-									5.5 —
			100	95	70					-									
6.00									260.60	- 6.00			End of Bore	hole at 6.00m			<u>*.</u>	<u> </u>	6.0 -
										-									-
										-									6.5 —
										-									-
										-									-
		<u></u>	TCR	SCR	RQD	FI				-									
Struck at (m)	Wate Casing to (r	r Strikes	Rose	e to (r	n) Ir	ema nspec	rks tion p	t hai	nd dug to	1.20m									
Casing	Details	Core	Barro	el															
	Signi (nill	T2-	101		_	orm	notic	n Pa	2507							lactile	dated		
		Air	i iyp Mist	e		er m i ermir	nated	n Ke at scł	reduled d	epth.						21/03/2	2024		69
Air Mist lerminated at scheduled depth. 21/03/20.										CO									

CAUSEWAY GEOTECH								Proje 23-	Project No. Project Name: Lackareagh Wind Farm 23-1870 Client: MKO Client: AFRY						Borehole ID RC-SC-03	
Meth	nod	Plant	Used		Тор	(m)	Base (m) Coord	dinates	cheffe 3	Nep. Ann	/			Shee	at 1 of 1
Rotary D Rotary (Rotary DrillingComacchio 4050.002.50Rotary CoringComacchio 4052.505.50		56363	563630.55 E 672571.08 N		Final Depth: 5.50 m Start Date: 24/01/2024 Driller: TA Elevation: 275.23 mOD End Date: 24/01/2024 Lorgen: TG										
Depth	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Wate Depth Dept	r Level	Depth	Legend		Description		- <u>.</u> 	ater	ckfill
(m)							(m) (m)	mOD	(m) -		Dark brown peaty T	OPSOIL.			3	-
								274.83	- 0.40 -		Soft brown slightly s Gravel is subangular	sandy slightly gravelly r fine to coarse.	SILT. Sand i	is fine to coarse.	X	- - 0.5 -
1.20 1.20 - 1.64	D1 SPT(C) 5 for 295r Hamme	50 (3,4/50 mm) er SN = 1377						274.43	- 0.80	Stiff brown slightly sandy gravelly SILT with high cobble and bould content. Sand is fine to coarse. Gravel is angular fine to coarse.						1.0
								273.03	- - - - - 2 20							- 2.0
								272.73	- 2.50	· · · · · ·	Weathered GREYW/ grey angular gravel)	ACKE (recovered throu	ugh percuss	ive drilling as		- - 2.5 -
			70	65	20	AZCL >20			-		GREYWACKE. Highly fracture spacing and from joint surfaces.	y weathered: reduced pervasive orangish b	l strength, m prown staini	nuch closer ng up to 50mm		
3.50						8		271.73	- - - 3.50		Discontinuities: 1. 0 to 30 degree jo with orangish brown 2. 40 to 65 degree ju	ints, closely spaced (5 n staining on joint sur oints, closely spaced (60/80/160), faces. (50/120/200	planar, smooth)), planar,		- - - 3.5 -
			100	100	100				- - - -		Medium strong (loc cemented GREYWA spacing and pervasi joint surfaces.	sn brown staining on j ally strong) massive g CKE. Slightly weathere ve orangish brown sta	rey fine-gra ed: slightly c aining up to	e / ined well closer fracture 10mm from		4.0
4.50						2			-		Discontinuities: 1. 0 to 30 degree jo smooth with orangi 2. 70 to 90 degree jo brown staining on jo	ints, medium spaced (sh brown staining on j oint at 3.50-3.90m, pl: pint surface.	(140/570/9: joint surface lanar, smoot	10), planar, es. :h with orangish		
			100	100	100				- - - -							5.0 — - - -
5.50								269.73	- 5.50 - - -			End of Borehole at	5.50m			5.5
																6.0 — — — —
									-							6.5
			TCR	SCR	RQD	FI			- - -							7.0
Struck at (m) Casing To (m)	Water Casing to (m Details Diam (mm	r Strikes)) Time (min))) Core) T2- Flust Air	Barro 101 Mist	e to (r	R n) Ir	ema ispect	rks tion pit h nation I	and dug to	1.20m					Last Up 21/03/	dated	

APPENDIX C CORE PHOTOGRAPHS

Lackareagh Wind Farm

Report No.: 23-1870

Borehole RC-SC-01 (3.00-5.20m)

Borehole RC-SC-02 (3.50-6.00m)

Lackareagh Wind Farm Report No.: 23-1870 Image: Construction of the No.: KC-SC-O3 box: 1 pept: 2.50-5.50m Image: Construction of the No.: KC-SC-O3 box: 1 pept: 2.50-5.50m

Borehole RC-SC-03 (2.50-5.50m)

APPENDIX D DYNAMIC PROBE LOGS

		Project No.	Project Name:	Probe ID		
		23-1870	Lackareagh Wind Fa	arm		
		Coordinates	Client:		DP-MM-01	
	GLOTLETT	562262.60 E	МКО			
Method:		673266 76 N	Client's Representa	ative:	<pre>K</pre>	Sheet 2 of 2
Dynamic Probing		073200.70 N	AFRY			Scale: 1:50
Probe Type:		Elevation	Final Depth:	Date:	Opérator:	
DPSH-B		141.85 mOD	12.00	28/01/2024		FINAL
Depth			Blows/100mm		70	Torque
(m)	10	20	30	4((Nm)
_	7	2			7	0
-	11	16 18				X
-	12	10				
-		15				
- 11 -		16 14				
-		13 17				
-		17 19	_			
-			25	34		
12			27			
-						
-						
- 13						
 -						
_						
-						
- 14						
-						
-						
-						
- 15 F						
-						
-						
- 16						
-						
-						
-						
- 17						
-						
-						
- 18						
_						
-						
-						
- 19						
_						
F						
<u> </u>						
	Remarks	I				
750 mm	Kontarko					
Hammer Mass:	4					
63.5 kg	Termination Reason				Last Up	odated
Cone Diameter:	 Terminated on Engineer's instru	uction			20/03/	
50.5 mm					20,001	GUA :

		Project No.	Project Name:	Probe ID		
		23-1870	Lackareagh Wind Fa	arm		
		Coordinates	s Client:	DP-SC-01		
	GLOTLETT	563628.39 E	МКО			
Method:		672544 07 N	Client's Represent	ative:	<u> </u>	Sheet 1 of 1
Dynamic Probing		072044.07 1	AFRY			Scale: 1:50
Probe Type:		Elevation	Final Depth:	Date:	Opérator:	EINIAI
DPSH-B		272.00 mOD	2.60	28/01/2024	IC V.	FINAL
Depth			Blows/100mm		50	Torque
(m)	10	20	30	40		(Nm)
	0				7	0
_	0					X
-	12					
		17	23			
- 1		18	25			
-			29	38		
-			28	30		
-	12					
- 2	8					
-	7 8					
-		14 2	0			
-						50
- 3						
Ē						
_						
_						
-						
- 4						
_						
-						
-						
5						
-						
_						
- 6						
-						
-						
- - 7						
- '						
E						
-						
È ,						
8						
-						
-						
-						
- 9						
-						
-						
Fall Height:	Remarks					1
750 mm						
Hammer Mass:						
03.5 Kg	Termination Reason				Last Up	dated
50.5 mm	Terminated on refusal				20/03/2	2024 AGS

		Project N	No.	Project Name:				Probe ID	
		23-187	0	Lackareagh Wind Fa	ırm				
		Coordina	ates	Client:	DP-SC-01A				
	GLOTECH	563629.88	8 E	МКО	<u> </u>	N			
Method:		672544 79	٥N	Client's Representa	itive:	A		Sheet 1 of 1	
Dynamic Probing	·	072011		AFRY		×		Scale: 1:50	
Probe Type:		Elevatio	on	Final Depth:	Date:	Operator:		FINAI	
DPSH-B		272.00 mC	DC	2.50	28/01/2024	IC V.			
Depth			E	Blows/100mm		4	50/	Torque	
(m)	10	2	20	30	40)	8	(Nm)	
	0						4	05	
F								TA .	
F		13							
-		1	2 ⁻ 19	1					
_ 1		1/		25					
-				49	31 37				
- -		12		28					
F	10	12							
2	8 8		<u> </u>						
E	8 10								
-		15		23				50	
-								50	
- - - -									
 		_	Ī						
-									
_									
-									
_ 4									
-									
-									
-									
- 5			<u> </u>						
_									
-									
— ю —									
-									
-									
- 7									
-									
-									
- 8									
-									
F _									
-9									
-									
-									
					I				
Fall Height:	Remarks								
750 mm	4								
Hammer Mass:						T			
Cono Diameter:	Termination Reason						Last Up	dated	
50.5 mm	Terminated on refusal						20/03/2	2024 AGS	
			Project I	No.	Project Name:				Probe ID
-----------------	------------------------	----	-----------	------	-------------------	------------	-----------	---	---
			23-187	0	Lackareagh Wind F	Farm			
	CENTECH		Coordina	ites	Client:				DP-SC-02
	GEOTECF	1	563628.3	6 E	МКО		~		
Method:			070550.0		Client's Represen	tative:	No.		Sheet 1 of 1
Dynamic Probing			672553.0	1 N	AFRY		C.		Scale: 1:50
Probe Type:			Elevatio	on	Final Depth:	Date:	Operator:		
DPSH-B			272.76 m0	DD	2.00	28/01/2024	IC V.		FINAL
Denth				E	Blows/100mm		•	20	Torque
(m)	10		2	0	30	2	10	~O _Q	(Nm)
-	0							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0
_									2×
-									, i i i i i i i i i i i i i i i i i i i
-	3	1	4						
- - 1									
- '		13	16						
-					27		44		
-						37		47	
_						34 37			
_ 2							1		50
-									
-									
_									
3									
_ 5									
-									
-									
-									
_ 4									
-									
-									
- 									
- 5 -									
-									
- 6									
-									
_									
_									
-									
- 7									
_									
_									
- 8									
-									
-									
_									
- 9									
-									
-									
Cell Lleisht:	Remarks								
750 mm	Kemarka								
Hammer Mass:	_								
63.5 kg	Termination Reason							Last Un	dated
Cone Diameter:									
50.5 mm	l erminated on refusal							20/03/2	2024 AGS

			Project N	lo.	Project Name:				Probe ID
			23-187	0	Lackareagh Wind Fa	arm			
	GEOTECH		Coordina	tes	Client:				DP-SC-02A
	GLOTLCH		563629.85	5 E	мко	~			
Method:			672553 73	RN	Client's Representa	ative:			Sheet 1 of 1
Dynamic Probing			072000.70		AFRY				Scale: 1:50
Probe Type:			Elevatio	n	Final Depth:	Date:	Opérator:		FINIAL
DPSH-B			272.76 mC	D	2.10	28/01/2024	IC Q.		
Depth				E	Blows/100mm			50	Torque
(m)	10		20	0	30	40 I		6	(Nm)
	0							7	0
-									X
-	2	42							
— 1 _		12	15						
-			18		27	32			
-						35		46	
-						33 37			
- 2					25 28				50
-									00
-									
- 3									
-									
-									
-									
- 4									
-									
-									
- 5									
_									
-									
6									
-									
-									
- - - 7									
E'									
-									
-									
- 8									
-									
-									
- 9									
_									
-									
-									
Fall Height:	Remarks								
750 mm									
Hammer Mass:									
Cone Diameter	iermination Reason							∟ast Up	
50.5 mm	Terminated on refusal							20/03/	2024 AGS

			Project No.	Project Name:			Probe ID
			23-1870	Lackareagh Wind I	Farm		
	GEOTECH	4	Coordinates	s Client:			DP-T1-01
	GLOTLET		562233.07 E	МКО		5	
Method:			673982 35 N	Client's Represen	itative:	×.	Sheet 1 of 1
Dynamic Probing			010002.001	AFRY			Scale: 1:50
Probe Type:			Elevation	Final Depth:	Date:	Opérator:	FINIAI
DPSH-B			236.57 mOD	4.80	28/01/2024		
Depth				Blows/100mm		50	Torque
(m)	10		20	30) 4(0 6	(Nm)
-	0					~	05
-	2 3						X
-		11		21			
-		11	18	22			
- 1 -		11					
_		14	15				
-		14	17	22			
-			18	29	9		
- 2							
		10 10					
-		10 11					
-							
3	7						
-	8						
-							
-	6						
- 4	6						
- '		10	15				
-			2	0 21			
					n		
-				2	35	41	
- - - - 5					35	41	50
5					35	41	50
5					35	41	50
5					35	☐ 41 	50
5					35	41	50
5					35	41	50
- 5 - 6					35	☐ 41 	50
6					35	41	50
- 5					35	41	50
- 5					35	☐ 41	50
6					35	41	50
6					35	<u>41</u>	50
- 5					35	<u>41</u>	50
- 5 - 6 - 7 - 7 - 8					35	☐ 41	50
- 5					35	<u>41</u>	50
- 5					€	41	50
- 5 - 6 - 7 - 8					€	41	50
- 5 - 6 - 7 - 8 - 8					35	☐ 41	50
- 5 - 6 - 7 - 8 - 9					€ 35		50
- 5 - 6 - 7 - 7 - 9 - 9 - 9					35	41	50
- 5 - 6 - 7 - 8 - 9					35	41	50
- 5					35	41	50
- 5 - 6 - 7 - 7 - 8 - 9 - 9 - 9	Remarks				35	41	50
- 5 - 6 - 7 - 7 - 9 - 9 	Remarks				35		50
- 5 - 6 - 7 - 7 - 8 - 9 9 9 	Remarks				35		50
- 5 - 6 - 7 - 7 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Remarks				35	☐ 41	odated

		Project No.	Project Name:			Probe ID
		23-1870	Lackareagh Wind Fai	rm		
	GEOTECH	Coordinates	Client:			DP-T1-01A
	GLOTLCH	562232.19 E	МКО			
Method:		673980 73 N	Client's Representation	tive:	< Contraction of the second se	Sheet 1 of 1
Dynamic Probing			AFRY			Scale: 1:50
Probe Type:		Elevation	Final Depth:	Date:	Operator:	FINAI
DPSH-B		236.56 mOD	4.80	28/01/2024		110.2
Depth		I	Blows/100mm		59	Torque
(m)	10	20	30	40		(NM)
-						2
_	0 3					× •
-		22	21			
- - 1	12	18				
- '	12	15				
-		15				
-		2	21 29			
- 2		17				
	12	13				
-	9					
- 3						
- 5						
-	777					
-	9					
-	7					
- 4	5 9					
-		20	22			
-			29	36	40	
- -					40	50
- 5						
-						
-						
- 6 -						
-						
-						
-						
-						
F _						
- 8						
-						
E						
F _						
- 9						
F						
E						
-						
	Pomorko					
Fall Height:	Remarks					
Hammer Mass:						
63.5 kg	Termination Reason				Last Ur	dated
Cone Diameter:	Terminated on refusal				20/03/	
50.5 mm					20/03/	AUD

Section 23:1870 contactange Austange Distance Distance <th></th> <th></th> <th>Project No.</th> <th>Project Name:</th> <th></th> <th></th> <th>Probe ID</th>			Project No.	Project Name:			Probe ID
Coordinates Coordinates Description DP-T3-01 Method:			23-1870	Lackareagh Wind Fa	arm		
CECUTECH 954002 SE MKC State 1:30 Dynamic Poling 07200 78 N 100 Defit: Date:: 000000000000000000000000000000000000			Coordinates	Client:			DP-T3-01
Mothod: promite Probing prostative: probability: probabi		GEOTECH	564002.85 E	МКО			
Dynamic Polamy Distant of serie : 1:30 MPRY Distant of serie : 1:30 Serie : 1:30 Torque in the serie in the s	Method:			Client's Representa	ative:	<pre>K</pre>	Sheet 1 of 1
Probe Type: Elevation Final Depth: Date: Opiditier FinAL Depth 10 20 20 20 0 0 FinAL Depth 10 20 20 20 0 0 0 0 1 10 20 20 20 <	Dynamic Probing		673280.78 N	AFRY			Scale: 1:50
Depth 35.74 mOD 2.50 2017/2024 IC PINAL Depth 70 800ws/100mm 70 70 70 1 1 1 1 1 1 1 1 2 3 1	Probe Type:		Elevation	Final Depth:	Date:	Operator:	FINIAL
Depth Depth <th< td=""><td>DPSH-B</td><td></td><td>365.74 mOD</td><td>2.50</td><td>28/01/2024</td><td>IC O</td><td>FINAL</td></th<>	DPSH-B		365.74 mOD	2.50	28/01/2024	IC O	FINAL
(n) 0 20 20 20 (Nm) 1 <td< td=""><td>Depth</td><td></td><td></td><td>Blows/100mm</td><td></td><td>59</td><td>Torque</td></td<>	Depth			Blows/100mm		59	Torque
1 1	(m)	10	20	30	4	u ^o o	(Nm)
1 1	-	0					0
1		Ŏ O					1×
1 1	_	3 5					
1	-	1	2	21			
Image: second	- - 1		13	21			-
2 0	-	1	2 13				
2 17 27 3 4 5 6 7 8 9 Fail Hoigh:	-	1	13 2 14				
2 </td <td>-</td> <td></td> <td>17</td> <td>27</td> <td></td> <td></td> <td></td>	-		17	27			
2 a a		9					
3	_	9			38		
3	-				33 36		
3	-						50
3	-						
4	- 3						-
4	-						
4	-						
4	_						
5	- 4						_
5 6 7 8 9 Fall Height: 70mm 8 9 Fall Height: 70mm 8 9 Fall Height: 70mm 8 9 Fall Height: 70mm 8 9 Fall Height: 70mm 1000 mm 1000 mm <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
5	-						
5	-						
3	-						
6	- 5 -						
6	-						
6 Image: constraint of the set of th	-						
6 Image: constraint of the season of the s	-						
7	_ 6						
7 -	-						
7	F						
7	-						
8 9 9 Image: Second S	- 7						-
8 9 9 Image: second	E						
8 Image: second secon	-						
8 Image: Cone Diameter: 70.0 Fail Height: 750 mm 750 mm Termination Reason Last Updated 20/03/2024	-						
9 9 Fall Height: 750 mm Hammer Mass: 63.5 kg Termination Reason Cone Diameter: 50.5 mm Terminated on refusal Last Updated 20/03/2024							
9 Fall Height: 750 mm Hammer Mass: 63.5 kg Termination Reason Cone Diameter: 50.5 mm Terminated on refusal Cone Diameter: Terminated on refusal							
9 Image: Second sec	F						
9 9 Fall Height: 750 mm 750 mm Hammer Mass: 63.5 kg 63.5 kg Termination Reason Last Updated 20/03/2024							
9 Image: Second sec	_						
Fall Height: Remarks 750 mm Fall Height: 750 mm Termination Reason Last Updated 20/03/2024	- 9						-
Fall Height: Remarks 750 mm Fall Height: 750 mm Image: Construction Reason Fall Height: Last Updated 20/03/2024 Image: Construction Reason	-						
Fall Height: 750 mm Remarks Hammer Mass: 63.5 kg Termination Reason Cone Diameter: 50.5 mm Last Updated 20/03/2024	F						
Fail Height: 750 mm Remarks Hammer Mass: 63.5 kg Termination Reason Cone Diameter: 50.5 mm Last Updated 20/03/2024	F						
Fall Height: 750 mm Remarks 750 mm							
750 mm Hammer Mass: 63.5 kg Termination Reason Cone Diameter: 50.5 mm 20/03/2024	Fall Height:	Remarks					1
Hammer Mass: East Updated 63.5 kg Termination Reason Cone Diameter: 50.5 mm 50.5 mm Terminated on refusal	750 mm						
63.5 kg Termination Reason Last Updated Cone Diameter: 50.5 mm 20/03/2024	Hammer Mass:						
Cone Diameter: 50.5 mm 20/03/2024 AGS 20/03/2024	63.5 kg	Termination Reason				Last U	odated
	50.5 mm	Terminated on refusal				20/03	AGS

			Project No.	Project Name:				Probe ID
			23-1870	Lackareagh Wind Fa	arm			
	GEOTECH	C	Coordinates	Client:				DP-T3-01A
	01011011	5	64001.91 E	МКО				
Method: Dynamic Probing		6	73281.35 N	Client's Representa	ative:	[©] C _A		Sheet 1 of 1 Scale: 1:50
Probe Type:			Elevation	Final Depth:	Date:	Operator:		
DPSH-B		36	65.74 mOD	2.50	28/01/2024	IC O.		FINAL
Depth (m)	10		20	Blows/100mm	<u>.</u> 4۵		000	Torque (Nm)
-						·		
-	0 3							TA .
-	5 9							
-	1	1		21				
- 1		13		21				
-		12 iš						
-		12 14	17					
-	10			26				
- 2	9				37			
-					33			
-					37			50
-								
- 3								
-								
-								
-								
- 4								
-								
-								
- 5								
-								
-								
6								
-								
-								
E ₇								
¢ (
E								
-								
⊢ ŏ								
F								
Ē								
ŧ.								
E 9								
-								
-								
-								
			I					
Fall Height: 750 mm	Remarks							
Hammer Mass	-							
63.5 kg	Termination Reason						Last Un	dated 🔳 🔳
Cone Diameter:	Terminated on refusal						20/03/2	
50.5 mm							20,00/2	

23-1070 Lackareage/Weind Fam OP-74-01 Wolfball 50.992.95 E MKO Sheet 1of 1 Sector 100 Ing F268/511 N F100 Upto: Date: Openation Policity F288.22 mOD 2.20 Defetion Openation F100 Upto: Policity F100 Upto: F100 Upto: Date: Openation F100 Upto: Policity F100 Upto: F100 Upto: Date: Openation F100 Upto: Policity F100 Upto: F100 Upto: Date: Openation F100 Upto: Policity F100 Upto: F100 Upto: Date: Openation Openation Policity F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto: F100 Upto:			Project No.	Project Name:			Probe ID
Coordinases Initiation Operation		ALISEWAY	23-1870	Lackareagh Wind Fa	arm		
Action: Bit State: a to be a to		GEOTECH	Coordinates	Client:			DP-T4-01
Method: Oranic Probang Oranic Probang Openande Probang Solution So		GEOTECH	563892.93 E	МКО	~		
Opmanie Control AFRY Seale: 1:50 Seale: 1:50 Probe Type: 2:20 Date: Operative: FINAL Depth 0 0 0 Total Image: Seale: 10 0 0 Total Image: Seale: 10 0 0 Total Image: Seale: 10 0 0 0 0 0 Image: Seale: 10 0	Method:		672675 11 N	Client's Represent	ative:		Sheet 1 of 1
Probe Type:	Dynamic Probing		072075.111	AFRY			Scale: 1:50
Depth 276 39 mol 220 220 201/2024 C 1 1 NAL Depth 10 10 2000000000000000000000000000000000000	Probe Type:		Elevation	Final Depth:	Date:	Opérator:	FINAL
Depth Biover/100mm Torque 1	DPSH-B		276.92 mOD	2.20	28/01/2024		
1 1	Depth (m)	10	20	Blows/100mm	40	5000	Torque (Nm)
1 1		0					
1 1	-	0					22
1 1	-	4 10					*
1 1	-	1	2	_ 22			
2	- - 1	1	2	21			
2 1 1 2 1			15				
2 Image: Construction Reason So 3 Image: Construction Reason Image: Construction Reason Image: Construction Reason 4 Image: Construction Reason Image: Construction Reason Image: Construction Reason Image: Construction Reason 6 Image: Construction Reason 7 Image: Construction Reason 7 Image: Construction Reason 7 Image: Construction Reason 7 Image: Construction Reason Image:	-	1	13 2 15				
2 3 3 3 3 50 3 3 3 3 1	-		15	28			
2 a a		10		20			
3	- 2 E	9			36		
3	-						50
3	-						
3							
4	- 3						
4	-						
4	-						
4	-						
5	- 4						
5	- '						
5	-						
6	_						
5	- -						
6	- 5 -						
6	-						
6							
6	-						
7	6						
7	-						
7	-						
7	-						
8	- 7						
8 Image: Second sec	E						
8 Image: Second sec	-						
8 Image: Second sec	-						
o Image: Second sec	-						
9 Fall Height: 750 mm Hammer Mass: 63.5 kg Termination Reason Cone Diameter: Terminated on refusal Terminated on refusal Terminated on refusal	- 0						
9 9 Image: Second state of the seco	-						
9 Fall Height: 750 mm Hammer Mass: 63.5 kg Cone Diameter: 50 5 mm Terminated on refusal	-						
- 9 - 9 - 9 - 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Fall Height: 750 mm Hammer Mass: 63.5 kg Cone Diameter: 50 5 mm Terminated on refusal Last Updated 20/03/2024	- 9						
Fall Height: Remarks 750 mm Remarks 63.5 kg Termination Reason Cone Diameter: Terminated on refusal 50 5 mm Terminated on refusal	-						
Fall Height: 750 mm Remarks 63.5 kg Termination Reason Cone Diameter: 50 5 mm Last Updated 20/03/2024	-						
Fail Height: 750 mm Remarks Hammer Mass: 63.5 kg Termination Reason Cone Diameter: 50 5 mm Last Updated 20/03/2024	È.						
Fall Height: Remarks 750 mm	-						
750 mm Hammer Mass: 63.5 kg Termination Reason Cone Diameter: 50.5 mm Terminated on refusal	Fall Height:	Remarks					
Hammer Mass: East Updated 63.5 kg Termination Reason Cone Diameter: 50.5 mm 50.5 mm Terminated on refusal	750 mm						
63.5 kg Termination Reason Last Updated Cone Diameter: 50.5 mm 20/03/2024	Hammer Mass:						
Cone Diameter: 50.5 mm 20/03/2024 50.5 mm 20/03/2024 AGS	63.5 kg	Termination Reason				Last Up	dated
	Cone Diameter:	Terminated on refusal				20/03/2	2024 AGS

		Project No.	Project Name:			Probe ID
		23-1870	Lackareagh Wind Fa	ırm		
	GEOTECH	Coordinates	Client:			DP-T4-01A
	GLOTLETT	563892.42 E	МКО			
Method:		672674 58 N	Client's Representa	ative:		Sheet 1 of 1
Dynamic Probing		072074.001	AFRY			Scale: 1:50
Probe Type:		Elevation	Final Depth:	Date:	Opérator:	FINAL
DPSH-B		276.93 mOD	2.20	28/01/2024		
Depth			Blows/100mm		50	Torque
(m)	10	20	30	40	8	(Nm)
_						0
-	3 4					X
-	9 11		_ 00			
			21			
— 1 _		14 15				
-		14 14				
-		15				
	9 40		28			
- 2	9			35		
-						50
-						
- 3						
-						
-						
- 4						
-						
-						
5						
- ŭ						
-						
-						
6						
- 0						
-						
-						
_						
-						
- 8						
-						
-						
9						
-						
-						
-						
-						
Fall Height:	Remarks					
750 mm						
Hammer Mass:						
Cone Diameter:	Termination Reason				Last Up	dated
50.5 mm	Terminated on refusal				20/03/2	2024 AGS

		Project No.	Project Name:			Probe ID
	CAUSEWAY	23-1870	Lackareagh Wind F	arm		
		Coordinates	s Client:			DP-T5-01
Mathadi		564012.30 E	MKO			
Dynamic Probing		672328.75 N		alive.	°C _A	Sheet 1 of 1
Probe Type:		Elevation	Final Depth:	Date:	Operator:	Scale. 1.50
DPSH-B		300.02 mOD	1.70	28/01/2024	IC S	FINAL
Depth			Blows/100mm		20/	Torque
(m)	10	20	30	40	-08	(Nm)
-	0				v	5
-	3					X
_						
_ ─ 1	12	15				
-						
-		13 13 16				
-					42	50
2						
_						
-						
-						
- 3						
- 4						
-						
-						
-						
-						
_						
6						
-						
_						
-						
-						
- 8						
-						
-						
- 9						
-						
	Remarks					
750 mm						
Hammer Mass:						
63.5 kg	Termination Reason				Last Up	dated
50.5 mm	Terminated on refusal				20/03/2	AGS

		Project N 23-187	No. 0	Project Name: Lackareagh Wind Fa		Probe ID			
	GEOTECH	-	Coordina	ites	Client:				DP-T5-01A
Method:			564012.5	3 ⊨	Client's Representa	ntive:			Sheet 1 of 1
Dynamic Probing			672329.04	4 N			°C		Scale: 1:50
Probe Type: DPSH-B			Elevatio 300.04 mC	on DD	Final Depth: 1.70	Date: 28/01/2024	Opérator: IC	_	FINAL
Depth (m)	10	,	2	E	Blows/100mm 30)	19/08	Torque (Nm)
-	0 0 0							7	2
-		_10							×
- - - 1		13	15						
- - -		11 12 12 12							
 - -			16					46	50
2									
- - -									
-									
— 3 -									
- -									
- - - 4									
- T - -									
 - -									
_ 5									
- - -									
-									
6 									
- - -									
- - - 7									
- '									
-									
- - -									
-									
— 9 _									
- -									
-									
Fall Height: 750 mm	Remarks								
Hammer Mass:	-								
o3.5 Kg Cone Diameter:	Termination Reason							Last Up	dated
50.5 mm	Terminated on refusal							20/03/2	2024 AGS

		Project No	D. Project Name:			Probe ID	
		23-1870	23-1870 Lackareagh Wind Farm				
		Coordinate	es Client:			DP-T6-01	
	GEOTECH	563321 11	_F МКО		^		
Method:			Client's Represent	tative:		Sheet 1 of 1	
Dynamic Probing		672267.96	N AFRY		$^{\circ}C_{\wedge}$	Scale: 1:50	
Probe Type:		Elevation	Final Depth:	Date:	Operator:		
DPSH-B		203.16 mOE	D 3.10	28/01/2024		FINAL	
						_	
Depth (m)	10	20	Blows/100mm	,		Torque (Nm)	
(,	0			4			
-	Ŏ					2	
_	3					×	
_	2 4						
-	99	3					
— 1 -	12	3					
	12	3					
_		14 14					
-							
- 2		19					
		16					
-			24	32			
-			24				
-		16 18					
- 3		14			47	50	
-							
_							
- 4							
- '							
-							
_							
_ 5							
-							
-							
- 6							
- 0							
-							
_							
- 7							
-							
-							
-							
- 8							
-							
-							
- 9							
E I							
E							
Fall Hoight:	Remarks						
750 mm							
Hammer Mass							
63.5 kg	Termination Reason				l ast Ur	odated 🗖 = 🖿	
Cone Diameter:							
50.5 mm	ierminated on refusal				20/03/	2024 AGS	

		Project No.	Project Name:			Probe ID
		23-1870	Lackareagh Wind Fa	arm		
	LAUSEWAT	Coordinates	Client:			DP-T7-01
-	GEOTECH	562402 12 E	мко			
Method:		303493.13 E	Client's Representa	ative:		Sheet 1 of 1
Dynamic Probing		671842.74 N	AFRY		°C _A	Scale: 1:50
Probe Type:		Flevation	Final Denth:	Dato:	Operator:	Scale. 1.50
		202 54 mOD	2 60	28/01/2024		FINAL
		202.34 1100	5.00	20/01/2024		
Depth			Blows/100mm		10	Torque
(m)	10	20	30	40		(Nm)
_					7	0
_						X
-						
-	9 11					
- 1		17				
-		18				
-		15				
	12	_				
_	12					
_ 2		14				
_	6					
-	25					
-	6 7					
	7 10					
- 3	9					
	88					
_	7	13				
_						50
- 4						
- '						
-						
-						
_						
_ 5						
-						
-						
-						
<u> </u>						
_						
-						
- 7						
- '						
-						
_						
- 8						
-						
-						
-						
9						
-						
-						
-						
Fall Height	Remarks					
750 mm						
Hammer Mass:	1					
63.5 kg	Termination Reason				Last Un	dated 🔳 🔳
Cone Diameter:	Terminated on refuse				20/02/	
50.5 mm					20/03/.	

		P	roject No.	Project Name:			Probe ID
			23-1870	Lackareagh Wind Fa	arm		
		C	oordinates	Client:			DP-T7-01A
	GEOTECH	56	33493.57 E	МКО			
Method:			74040 40 N	Client's Representa	ative:	<pre>K</pre>	Sheet 1 of 1
Dynamic Probing		67	/1843.18 N	AFRY		C.	Scale: 1:50
Probe Type:			Elevation	Final Depth:	Date:	Opérator:	
DPSH-B		20	2.55 mOD	3.60	28/01/2024		FINAL
Denth		······		Blows/100mm		20/	Torque
(m)	10		20	30	40		(Nm)
	0					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-							LA .
-	3 9 10						
- - 1			17				
			18				
-		14					
-		12 11 12					
		12					
- 2	8	14					
-	6						
-	<u>5</u> 6						
-	6 7						
- 3	10						
-	9	12					
-	8	14					
-		17					50
- 4							
-							
-							
-							
_ 5							
-							
-							
- 6							
_							
_							
- - -							
-							
-							
8							
-							
_							
_ q							
_ ~							
-							
-							
-							
				I	l		
Fall Height:	Remarks						
Hammor Mass:	-						
63.5 kg	Termination Reason					l ast llr	
Cone Diameter:						Last Op	
50.5 mm	Ierminated on refusal					20/03/2	²⁰²⁴ AGS

APPENDIX E TRIAL PIT LOGS

			Proj	ect No.	Projec	Name:	Т	rial Pit ID
	CAUS	SEWAY	23-	-1870	Lackar	eagh Wind Farm		
		GEOTECH	Coor	dinates	Client:		T	P-MM-01
		BLOTEON	5622	57 10 E	МКО	\wedge		
Method:				37.40 L	Client'	s Representative:	S	neet 1 of 1
Trial Pitting			6/32	/1.8/ N	AFRY		S	cale: 1:25
Plant:			Elev	vation	Date:	Logger:		
13t Tracked Ex	kcavator		141.94	1 mOD	12/12/	2023 JAČČ.		FINAL
Depth	Sample /	Field Records	Level	Depth	Legend	Description	ater	
(m)	Tests		(mOD)	(m)		TOPSOIL		
				-			Pro-	
			141.74	0.20	<u></u>	Soft orangish brown sandy gravelly silty CLAY with low cobble content.	- 4	- 🗸
				-	<u>x</u>	Sand is fine to coarse. Gravel is subangular fine to coarse.		^ –
0.50	24			-	<u>x</u>			-
0.50	B1 D2			-	<u>x</u>			0.5
			141 24	- 0.70	<u>x</u>			
			141.24	-	×××	Firm light brown slightly sandy gravelly SILT with low cobble content.		_
				-	XXX			_
				-	XXX			1.0
				-	$\times \times \times$			-
				-	$\times \times $			
				-				-
				-	× × ×			-
1.50	B3			-	$\sim \sim \sim$			1.5 —
1.50	04		140.34	- 1.60	<u>× *× · × ·)</u>	End of trial pit at 1.60m		-
				-				_
				-				2.0
				-				_
				-				_
				-				_
				-				-
				-				2.5 —
				-				-
				-				-
				-				-
				-				-
				_				3.0
				-				_
				-				_
				-				_
				-				3.5 —
				-				-
				-				
				-				-
				-				-
								4.0
								_
				-				
				-				_
				-				4.5
				-				-
				-				
				-				
				-				-
Wate	r Strikes	Depth: 1.60	Rem	narks:				
Struck at (m)	Remarks	Width: 140	NO	groundwate	er encou	nterea		
		Length 2 90						
				<u> </u>				
		Stability:	Terr	nination R	eason	Last	Update	
		Stable	Terminated at refusal on boulders / possible bedrock. 21/03/					

			Proj	ect No.	Project	Name:	Т	rial Pit ID
	CAUS	FWAY	23-	-1870	Lackare	agh Wind Farm		
		GEOTECH	Coor	dinates	Client:		Т	P-SC-01
			5634	95.49 E	МКО	<u> </u>		
Method:			6724	75.21 N	Client's	Representative:	Sł	neet 1 of 1
Trial Pitting					AFRY		S	cale: 1:25
Plant:			Elev	vation	Date:	Logger:		FINAL
13t Tracked Exc			247.68	s mOD	24/01/			
(m)	Tests	Field Records	(mOD)	(m)	Legend	Description	Mate	
				-		TOPSOIL	°°	_
			247.48	0.20		Firm light brown slightly sandy very gravelly CLAY with low couble an	nd C	
				-	Ô~Ô	boulder content. Sand is fine to coarse. Gravel is subangular fine to		× _
				-	Ô-Ô-	coarse.		-
				-	Ô-Ô-			0.5
				-	Ô-Ô-			_
				-	0-0			_
				-	0-0			_
1.00 1.00	B1 D2			-	0-0-			1.0
100	52			-	0-0-			_
				-	0-0-			_
				-	0-0-			_
				-	0-0-			1.5 —
		Light flow at 1.60m	246.08	1.60		End of trial pit at 1.60m	_	-
				-				_
				-				_
				-				2.0
				-				_
				-				_
				-				_
				-				2.5
				-				_
				-				_
				-				_
				[3.0
				-				_
				-				_
				-				_
				-				25
				-				
				-				-
				-				_
				-				-
				-				4.0
				-				_
				-				_
				-				_
				-				4.5
				-				_
				-				_
				-				-
Water	Strikes	Depth: 1.60	Rem	narks:				
Struck at (m)	Remarks	width: 1.50						
1.00	1.60m	Length: 3.60						
Stability: Termination			nination R	eason	ast Update	d 📕 🖬 🖻		
	Stable Terminat				rtual refu	sal	21/03/2024	ACS
		JUDIC	ieill	accu on vi		201		AUD

			Proj	ect No.	Project	Name:		Trial Pit ID
	CAUS	SEWAY	23	-1870	Lackare	eagh Wind Farm		
		GEOTECH	Coor	dinates	Client:			TP-SC-02
			5635	01.42 E	МКО	<u></u>		
Method:			6725	14.45 N	Client's	s Representative:		Sheet 1 of 1
Plant:			Flor	vation	AFRY Data:	l bergor:		Scale: 1:25
13t Tracked Exc	avator		253.70		24/01/	2024		FINAL
Depth	Sample /		Level	Depth				e
(m)	Tests	Field Records	(mOD)	(m)	Legend	Description	0	K
							J.	2
			253.54	0.25		First links have a set of a second to CUT, with here as here a set of a	lia fin a	A .
				É	× × ×	to coarse. Gravel is subangular fine to coarse.	is line	
				-				0.5 -
				E	× × × ×			
				-	× × × ×			
				-	× × × ×			
1.00	R1			Ĺ	× × × ×			10-
1.00	D2			-	* * * * * * * *			
			252.59	1.20	$\times \times \times$	Brown sandy slightly silty angular fine to coarse GRAVEL with low c	obble	
				-	م × م م م × م	content. Sand is fine to coarse.	JOBBIC	
				-	م ×. مح م ×. مح			
1.60	B3				م ×. مح م ×. مح			1.5 -
1.60	D4			-	• × • • • • • •			
				Ĺ	• × • • • • • •			
				-	• × • • • • • •			
				-	• × • • • • • •			2.0
					• × • • • • • • • • • • • • • • • • • •			
		Seepage at 2.30m	251.49	2.30	• × • • × •	End of trial pit at 2 30m		
				-				2.5 -
				Ē				
				-				
				-				
				-				3.0
				Ĺ				3.5 -
				-				
				-				
				Ĺ				
				-				4.0
				ľ				
				-				
				Ĺ				
				-				4.5 -
				-				
				ŀ				
				-				
Water	Strikes	<u> </u>	Ren	narks:				
Struck at (m)	Remarks	Depth: 2.30		-				
2.30	Seepage a	t Width: 1.70						
	2.30m	Length: 4.10						
	Stability: Termination Re				eason		Last Upda	ated
		Stable	Term	ninated on vi	irtual refu	21/03/20	AGS	

			Proj	ect No.	Project	Name:			Tria	l Pit ID
	CAUS	EWAY	23-	-1870	Lackare	eagh Wind Farm				
	G	EOTECH	Coor	dinates	Client:				TP-	SC-03
-			5635	63.63 E		D				
			6724	95.96 N	Client	s Representative:	' <u>^</u>		Shee	et 1 of 1
Irial Pitting					AFRY				Sca	e: 1:25
12t Tracked Ev	avator		Elev			2024	Logger		FI	NAL
Donth			200.92	Denth	20/01/	2024	JAC 🗸		5	
(m)	Tests	Field Records	(mOD)	(m)	Legend	Descript	tion	V.	Wat	
				-		Peaty TOPSOIL		-0	2	_
			260.72	0.20		Firm light brown slightly sandy gravelly	SILT with low cobble and	boulder		. –
				-	$\langle \times \times \times \rangle$	content. Sand is fine to coarse. Gravel i	s subangular fine to coar	se.	×	-
				-	$\langle \times \times \times \rangle$					-
				-	$(\times \times \times)$					0.5
				-	$(\times \times \times)$					_
				-	$\times \times \times \times$					_
				-	$\times \times \times \times$					-
1.00 1.00	B1 D2			-	\times \times \times \times					1.0
				-	\times \times \times \times					_
				-	$\left \begin{array}{c} \times \times \times \\ \times \times \times \end{array} \right $					_
				-	\times \times \times \times					_
				-	\times \times \times \times					1.5 —
				-	\times \times \times \times					_
			259.22	1.70		End of trial pit	at 1.70m			_
				-						_
				-						2.0
				-						_
				-						_
				-						_
				-						2.5
				-						_
				-						-
				-						_
				-						
				-						
				-						-
				-						_
				-						-
				-						3.5 —
				-						_
				-						-
				-						-
				-						4.0
										_
				-						_
				-						_
				-						4.5 —
				-						-
				-						_
				-						_
				-						
Water	r Strikes	Depth: 1 70	Rem	narks:						
Struck at (m)	Remarks	Width: 1.60	Nog	groundwat	er encou	ntered				
		Length: 4.00								
Stability Termination Po			n Reason Last I				ated			
		Stability: Termination Rea				on virtual refusal				
		Unstable	ferm	iinated on v	irtual refu	sai		21/03/20	J24	AGS

			Proj	ect No.	Project	Name:		Trial Pit ID
	CAUS	FWAY	23-	1870	Lackare	eagh Wind Farm		
	G	GEOTECH	Coor	dinates	Client:			TP-SC-04
			5635	65.30 E	МКО	<u>_</u>		
Method:			6725	43 35 N	Client's	s Representative:		Sheet 1 of 1
Trial Pitting			0723	13.33 11	AFRY	<u></u>		Scale: 1:25
Plant:			Elev	vation	Date:	Logger		FINAI
13t Tracked Ex	cavator		265.07	mOD	24/01/			
(m)	Tests	Field Records	(mOD)	Depth (m)	Legend	Description	0	Wate
		Light seepage at 0.40	264.87	0.20		Firm light brown sandy gravelly SILT with low cobble content. S fine to coarse. Gravel is subangular to angular fine to coarse.	and is	
1.00 1.00	B1 D2		263.77	1.30		Light brown sandy clayey angular fine to coarse GRAVEL with m cobble content. Sand is fine to coarse.	edium	
2.00 2.00 3.00 3.00	B3 D4 B5 D6							2.0
		Light seepage at 3.40m	261.67	3.40		End of trial pit at 3.40m		
Water	Strikes	Depth: 3.40	Rem	arks:			I	<u> </u>
Struck at (m)	Remarks							
3.40	Light seepage	e at voictin: 1.60						
0.40	Light seepage	e at		• • •				
	0.40 Stability: Termination Stable Terminated on				eason irtual refu	21/03/20	D24 AGS	

			Proje	ect No.	Project	Name:		Trial Pit ID
	CAUS	FWAY	23-	-1870	Lackare	eagh Wind Farm		
	G	EOTECH	Coor	dinates	Client:			TP-SC-05
			5636	10 47 F	МКО			
Method:			6725	36.64 N	Client's	s Representative:		Sheet 1 of 1
Trial Pitting			0723	50.04 1	AFRY			Scale: 1:25
Plant:			Elev	vation	Date:		er:	
13t Tracked Ex	cavator		268.99	€ mOD	24/01/	2024 JAC	Э.	
Depth	Sample /	Field Records	Level	Depth (m)	Legend	Description	79	Vater
(111)	ICOLO					Peaty TOPSOIL	-00	2
			260.70	-			4	
			208.79	0.20	$\times \times \times \times$	Firm light brown slightly sandy very gravelly SILT with mediu	n cobble	TX .
				-	* * × × * * * * *	and boulder content. Salid is lifte to coarse. Graver is subaring coarse.	Jar The to	
				F	$\times \times $			0.5 -
				-	× × × ×			
					××××			
				ŀ	(****			
				ŀ				-
1.00	D2			Ē				1.0
			267.79	- 1.20	$\times \times \times$			
			207175	-	\mathbf{O}	Stiff light brown sandy gravelly CLAY with medium cobble an content. Sand is fine to coarse. Gravel is angular fine to coars	d boulder .e.	
				-	$\mathbf{D} = \mathbf{O}$			
				[0-0-			1.5 —
				-	Ô-Ô-			-
				-				-
				-				
2 00	B3			[2.0
2.00	D4			-	0-0			
				-	0-0			
					$\mathbf{\hat{O}}^{0}$			
				-	0-0-			-
				-	0-0-			2.5 —
			266.20	2 70	0-0-			
			200.29	2.70		End of trial pit at 2.70m		
				-				
				-				3.0
				-				
				-				-
				-				-
				-				-
				[3.3 -
				-				
				-				
				-				4.0
				-				-
				-				-
				-				
				-				4.5 -
				-				
				[-
				-				-
				<u> </u>				
Wate	r Strikes	Depth: 2.70	Rem	narks:	er encou	ntered		
Struck at (m)	Remarks	Width: 1.50		₂ , our luwalt	ar encou	incred .		
		Length: 4.30						
		Stability:	Terr	nination R	eason		Last Upr	lated
	Stability: Iermination				ed on virtual refusal			
		Stable	ferm	iinated on vi	rtual refu	sai	21/03/2	AGS

			Proje	ect No.	Projec	Name:		Trial Pit ID
	CAUS	FWAY	23-	·1870	Lackare	eagh Wind Farm		
	G	EOTECH	Coord	dinates	Client:			TP-SC-06
			5636'	50.56 F	МКО	<u> </u>		
Method:			6725	78 40 N	Client'	s Representative:		Sheet 1 of 1
Trial Pitting			0723	70.40 1	AFRY	<u>````````````````````````````````</u>		Scale: 1:25
Plant:			Elev	vation	Date:	Logger:		ΓΙΝΙΔΙ
13t Tracked Ex	cavator		276.88	3 mOD	24/01/	2024 JAC		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	9/1	Water
				[Peaty TOPSOIL	0	
				- -			1	2 _
				F				`X _
			276.48	0.40		Firm light brown slightly sandy very gravelly SILT with medium cobb	ole	
				- -		and medium boulder content. Sand is fine to coarse. Gravel is subar	ngular	0.5
				F		to subrounded fine to coarse.		-
				Ĺ				_
				ŀ	×××			_
1.00	B1			F	×××			1.0
1.00	D2			Ĺ	$\langle \times \times \times \rangle$			
			275.68	1.20		Light brown sandy clayey subangular to subrounded fine to coarse		-
				F		GRAVEL with medium cobble and boulder content. Sand is fine to co	oarse.	-
				Ĺ				15
				ŀ				_
				F				_
				Ē				-
				ŀ				-
2.00 2.00	B3 D4			F				2.0
2.00		Moderate flow at 2 20m	274 68	2 20				
	'		274.00	2.20		End of trial pit at 2.20m		_
				F				_
				Ē				2.5
				-				-
				F				-
				Ē				
				+				3.0
				F				_
				Ē				-
				+ F				-
				F				-
				Ē				3.5
				- -				_
				F				_
				Ĺ				
				⊢- F				4.0
				F				-
				Ē				
				-				_
				F				4.5
				Ē				-
				F				-
				F				
				Ē				
14/-+	Striker		Rom	harks:				
Struck at (m)	Remarks	Depth: 2.20	Rein	iui n3.				
2.20	Moderate flo	Width: 1.60						
	at 2.20m	Length: 4.20						
	Stability: Termination Re				eason	Li	ast Upda	ated
		Unstable	Term	ninated on vi	irtual refu	21/03/20	AGS	
								AUD

			Proj	ect No.	Project	Name:	Ti	rial Pit ID	
	CAUS	FWAY	23-	-1870	Lackare	eagh Wind Farm			
		EOTECH	Coor	dinates	Client:		T	P-T1-01	
			5622	08 01 F	МКО				
Method:			6720		Client's	s Representative:	Sh	eet 1 of 1	
Trial Pitting				80.23 N	AFRY		Sc	cale: 1:25	
Plant:			Elev	vation	Date:	Lógger:			
13t Tracked Ex	kcavator		235.17	7 mOD	12/12/	2023 JAC 📿		FINAL	
Depth (m)	Sample /	Field Records	Level	Depth (m)	Legend	Description)) Vater		
(11)	lesis			- (11)		TOPSOIL	0		
			224.07	- 0.20			10	_	
			234.97	0.20	<u>~~~</u> ~	Firm orangish brown sandy gravelly silty CLAY with low cobble content.	. 7	X]	
				-		Sand is fine to coarse. Gravel is subangular fine to coarse.		_	
0.50	B1			-				0.5	
0.50	D2			-				_	
								_	
			234.37	0.80	0. <u> </u>	Stiff light brown slightly sandy gravelly CLAY with low cobble and bould	ler	_	
				-	\mathbf{D}	content. Sand is fine to coarse. Gravel is angular fine to coarse.		_	
				-	0-0-			1.0	
				-				-	
				Ē				-	
				E	$\mathbf{O}^{\mathbf{O}}$			_	
1 50	B3			-	0.0			15 -	
1.50	D4			-					
				-				_	
				-				_	
				-				_	
				F				2.0	
				-	00-			-	
				-	0-0-			_	
				-	Ô-,Ô,			-	
2.50	D.C.			-				-	
2.50	B5 D6			E				2.5	
				-	0-0-			_	
				-	0.0			_	
				-				_	
				-				3.0	
				E				_	
			231.97	3.20		End of trial pit at 3.20m	-	-	
				-				_	
				-				-	
				-				3.5 —	
								_	
				-				_	
				-				_	
				-				4.0	
				-				_	
				E				_	
				-				_	
				-				-	
				-				4.5	
				F				_	
				E				_	
				ŀ					
				-					
\\/ə+c	er Strikes		Ren	narks:					
Struck at (m)	Remarks	Depth: 3.20	No į	groundwate					
		Width: 1.40							
		Length: 3.60							
Stability: Termination Re				nination R	eason	Last	Update		
	Stable Terminated a					d at refusal on boulders / possible bedrock. 21/0:			
		Studie			. asar on c	21/	55,2024	AUD	

			Proj	ect No.	Project	Name:		Tr	ial Pit ID
	CAUS	SEWAY	23-	-1870	Lackare	agh Wind Farm			
		GEOTECH	Coor	dinates	Client:			TI	P-T2-01
		BLOTEON	5622	07 76 E	МКО	\wedge			
Method:			- 5022	02.20 E	Client's	Representative:		Sh	eet 1 of 1
Trial Pitting			6/35	86.76 N	AFRY			Sc	ale: 1:25
Plant:			Elev	vation	Date:	Lóggei	r:		
13t Tracked Exc	cavator		187.10) mOD	13/12/	2023 JAČČ).		FINAL
Depth	Sample /	Field Records	Level	Depth	Legend	Description	20	ater	
(m)	Tests		(mOD)	(m)			O	Š	
				-) "	Ś	_
			186.90	0.20		Firm orangish brown sandy gravelly silty CLAY with low cobble	content.	A.	
				-	<u>x</u>	Sand is fine to coarse. Gravel is subangular fine to coarse.			
0.40	D2		186.70	0.40	××××	Stiff light brown sandy gravelly SILT. Sand is fine to coarse. Grav	vel is		_
0.50	B1			-	XXXX	subrounded fine to coarse.			0.5 —
				-	XXXX				_
				-	$\times \times \times$				_
				-	(-
1.00	82			-	(-
1.00	вз D4			-	xx.x				1.0
			195.00	1 20	× × × × (× × ×				
			185.50	1.20		End of trial pit at 1.20m			_
				-					_
				-					15 —
				-					_
				-					_
				-					_
				-					_
				-					2.0
				-					_
				-					-
				-					_
									_
				-					2.5 —
				-					_
				-					-
				-					_
				-					-
									3.0
				-					-
				-					_
				-					_
									25
				-					3.0
				-					_
				-					_
				-					_
				- 					4.0
				-					-
				-					-
				-					-
				-					_
				[4.5
				-					_
				-					_
				-					_
				-					_
Water	Strikes	Depth: 1.20	Rem	narks:					
Struck at (m)	Remarks	Width: 1 40	INO §	groundwate	er encou	Itereu			
		Length: 220							
		CIIGUI 3.30		<u> </u>				<u>.</u>	
		Stability:	Tern	nination R	eason		Last Up	dated	
		Stable	Terminated at refusal on boulders / possible bedrock. 21/03						AGS

	/		Proj	ect No.	Project	Name:	Τ.	Trial Pit ID
	CAUS	ΕWΔΥ	23-	1870	Lackare	eagh Wind Farm		
	GI	EOTECH	Coor	dinates	Client:		•	TP-T3-01
			5640	07.76 F	МКО	<u> </u>		
Method:			6732	78 88 N	Client's	s Representative:	S	heet 1 of 1
Trial Pitting			0752	70.00 N	AFRY	<u>````````````````````````````````</u>		Scale: 1:25
Plant:			Elev	vation	Date:	Logger:		FINAI
13t Tracked Ex	cavator		364.65	mOD	11/12/		<u> </u>	
(m)	Tests	Field Records	(mOD)	Deptn (m)	Legend	Description	Wate	
				-		TOPSOIL with roots and rootlets	2	_
			264.20	- 0.25				`× -
			304.30	0.35	°a × °0 a × ∘ a × 0	Orangish brown sandy silty angular fine to coarse GRAVEL with low		-
				-	° × ∘ ∝ 0			0.5
0.70	P1			-	ه × ، م ه م × ، م ۸			
0.70	D2		363.85	- 0.80	ه ×ه ، م	· · · · · · · · · · · · · · · · · · ·	_	_
				-	a ° a ° 0	Brownish sandy angular fine to coarse GRAVEL of greywacke with high cobble content. Sand is fine to coarse. Cobbles are angular of greywacke.		_
				-	a ° ° ° 0	(Possible weathered bedrock)		1.0
					a ° ° °			-
				-	a ° ° °			-
				-	a ° a °			
				-	a • ° ° °			1.5 —
				-	a • ° ° °			_
1.70	В3			-	a ° ° 8			-
1.70	D4				a ° ° 9			-
					a ° ° 9			-
				-	a ° a °			2.0
				-	a ° a °			_
			362.35	- 2.30	a • • • •	End of trial nit at 2 30m	_	_
				-				-
				-				2.5
				-				_
				-				
				-				_
				-				3.0
								-
				-				_
				-				
				-				3.5 —
				-				
				-				-
				-				-
				-				-
				-				4.0
				-				
				-				-
				-				-
				-				4.5
				-				
				-				
				-				-
							+	
Water	Strikes	Denth: 2.30	Rem	arks:				
Struck at (m)	Remarks	Width 2.00	Nog	groundwate	er encou	ntered		
		length 4.20						
		Ctob		almati		I • • • •		- d 1997-1997 -
	Stability: Termination R				eason	paat		
		Unstable	Term	inated at re	fusal on b	oulders / possible bedrock. 21/03	3/2024	₄ AGS

			Proj	ect No.	Project	Name:	Т	rial Pit ID
	CAUS	FWAY	23-	·1870	Lackare	eagh Wind Farm		
- H		GEOTECH	Coor	dinates	Client:		Т	P-T4-01
-			5638	86.60 F	МКО	∧		
Method:			6726	83 32 N	Client's	s Representative:	Sł	neet 1 of 1
Trial Pitting			0720	55.52 N	AFRY	<u>````````````````````````````````</u>	S	cale: 1:25
Plant:			Elev	vation	Date:	Logger:		FINAI
13t Tracked Ex	.cavator		276.38	3 mOD	11/12/			
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water	
				t		Brown peaty TOPSOIL with roots and rootlets	5	
				ŀ			0) –
				F				록 _
			275.98	0.40		Soft light brownich grey sandy gravelly SUT with low cobble and boulder	_	-
				Ē	× × × ×	content. Sand is fine to coarse. Gravel is angular fine to coarse.		0.5
0.60	B1			ŀ	(* * * * 			-
0.60	D2			ŀ	(_
				F	(* * * * * * *			_
				Ĺ	(* * * * * * * *			10
				Ē	×××,			1.0
			275.18	1.20	Â× X X			_
				F		End of that pit at 1.20m		_
				F				_
				Ĺ				1.5 —
				ŀ				_
				F				_
				F				_
				Ĺ				20
				L F				2.0
				F				_
				F				_
				Ē				_
				L L				2.5
				Ē				_
				F				_
				F				_
				Ĺ				3.0
				ŀ				
				F				_
				F				-
				Ē				-
				ŀ				3.5
				ŀ				_
				F				_
				É				
				Ļ				4.0
				F				_
				F				_
				f				_
				Ļ				_
				ŀ				4.5
				F				_
				f				_
				ŀ				
				<u> </u>				
Wate	r Strikes		Rem	narks:				
Struck at (m)	Remarks	Depth: 1.20	Nog	groundwate	er encou	ntered		
		Width: 1.10						
		Length: 3.80						
		Stability:	Tern	nination R	eason	Last Up	date	d
		Unstable	Term	ninated at re	fusal on b	oulders / possible bedrock. 21/03/	/2024	AGS
								AUU

CAUSEWAY		Proj	Project No. 23-1870		Project Name:				
		23-			Lackareagh Wind Farm				
GEOTECH			Coor	Coordinates		Client:			
			5639	563977.48 E		МКО			
Method:			6723	672336.61 N		Representative:		Sheet 1 of 1	
Trial Pitting			FL	072330.01 N		AFRY			
Plant:			Elevation		Date:	Date: Logger:			
Lot Iracked Excavator			301.59 mOD		24/01/		:		
(m)	Tests	Field Records	(mOD)	(m)	Legend	Description	90 M		
				-		TOPSOIL	6	_	
			301.39	0.20		Firm orangish brown slightly sandy yery gravelly SIIT with low coh	hle	2 -	
					$\times \times \times \times$	content. Sand is fine to coarse. Gravel is subangular fine to coarse.		× –	
				-				-	
				-				0.5	
				a a	× × × ×				
				-	× × × ×			_	
				-	× × × ×			_	
1.00	B1			-	× × × ×			1.0	
1.00	02			a.	× × × ×			_	
				-	× × × ×			_	
				-	XXX				
			300.09	- 1.50	XXXX			1.5 —	
				-		Brown slightly sandy angular fine to coarse GRAVEL of greywacke whigh cobble content. Sand is fine to coarse. Cobbles are angular of	with	_	
1.70	В3			-		greywacke. (Possible weathered bedrock)		_	
								_	
			299.69	- 1.90		End of trial pit at 1.90m		-	
				-				2.0	
				-				_	
				a.				_	
				-				-	
				-				2.5	
				8				_	
				-					
				-				_	
				-				3.0	
				-				-	
				-				_	
				-				_	
				-				3.5 —	
				-				_	
				-					
				-				-	
				-					
				-				4.0	
				-					
				-				-	
				-				-	
				-				4.5	
				-					
				-					
				-					
				-					
Water Strikes			Rem	arks:			I	1	
Struck at (m)	Remarks	Width: 150	No g	groundwate	er encou	ntered			
Lengtn: 3.40									
Stability:			Tern	Termination Reason Las					
		Term	21/03/202	AGS					

			Proje	Project No.		Project Name:				Trial Pit ID	
GEOTECH		23-1870		Lackareagh Wind Farm							
		EOTECH	Coordinates		Client:				TP-T6-01		
			563314 91 F		МКО						
Method:			672289.52 N		Client's Representative:				Sheet 1 of 1		
Trial Pitting					AFRY		· 💫 🚬		Scale: 1:25		
Plant:			Elevation		Date:	Date: Logger:					
13t Tracked Ex	cavator		203.45	5 mOD	12/12/	12/12/2023 JAC			'		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		50	Vater		
,	10000		(1102)	- <u>(,</u>		TOPSOIL		- 00-	1		
			202 25	0.20					5	_	
			203.23	0.20	<u>x x o</u>	Firm orangish brown slightly sandy gravelly silty CL	AY with low c	obble	Tx	/	
				F	<u>x x o</u>			ise.		_	
0.50	B1			F	x x o					0.5	
0.50	D2			Ē	× × 0					_	
										_	
				F						_	
				F						_	
				Ē						1.0	
				-	α <u></u>					_	
			202.15	1.30	X			<i>c</i>		_	
				Ē		stiff brown sandy gravely CLAY with low cobble col coarse. Gravel is angular fine to coarse.	itent. Sand is	s fine to		_	
1.50	B3			Ē	ere. ere • • • • • • • • • • • • • • • • • • •					1.5 —	
1.50	D4			ŀ						_	
				F						-	
				F						_	
				F							
				-						2.0	
				-						_	
				F	م میں میں میں م					_	
				Ē						_	
2.50	B5			-	မိုင်္နိုင်မှု ဖို					2.5	
2.50	D6			-	orororororo articororororo					_	
										_	
				Ē						_	
				-						30	
				-							
			200.25	3.20		End of trial pit at 2 20m				_	
				Ē		End of that pit at 3.20m				_	
				Ē						_	
				-						3.5 —	
				-						_	
				Ē						_	
				Ē							
				+ 						4.0	
				F						_	
				Ē						_	
										_	
				-						_	
				r r						4.5	
				Ē						_	
				Ē							
				-						_	
											
Wate	r Strikes		Rem	arks:							
Struck at (m)	truck at (m) Remarks Depth: 3.20		No g	groundwate	er encou	ntered					
		Width: 1.40									
	Length: 3.40 Stability:										
			Term	nination Re	eason		_	Last Upda	ated		
		Stable	Terminated at re			refusal on boulders / possible bedrock. 21/				AGS	

			Proj	Project No.		Project Name:			
GEOTECH			23-	23-1870		Lackareagh Wind Farm			
			Coor	Coordinates		Client:			
			5633	563391.33 F		МКО			
Method:			671880 53 N		Client's Representative:			eet 1 of 1	
Trial Pitting			071880.55 N		AFRY	S	Scale: 1:25		
Plant:			Elevation		Date:		FINAI		
13t Iracked Excavator			204.79 mOD		13/12/2023 JAC .				
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Mater		
			204 69	0.10		TOPSOIL	0		
	B1 D2		204.19	0.60	$\times \times \times$	Firm orangish brown sandy gravelly SILT with low cobble content. Sa fine to coarse. Gravel is subangular fine to coarse	and is		
					$\times \times \times$,		록 _	
0.50					XXXX			_	
					XXXX			0.5 —	
0.50					•ו•ו	Light brown sandy silty angular fine to coarse GRAVEL with low cobb	ble	_	
				-	• × • • • •	and boulder content. Sand is fine to coarse.			
				-	a × مو م			_	
				-	• X • • • • •			1.0	
				-	• × • • • • •			_	
	B3 D4			-	a× a× 0			_	
					•ו•ו			_	
1 50					• X • • × •			15	
1.50					• × • • • • •				
				-	a× a× 0 a × a× 0			-	
		Seepage at 1.80m	202.99	1.80	X O X	Stiff light brown slightly sandy very gravelly silty CLAY with low cobb	hle 🗶	-	
				-	<u>~0~</u> 8	and boulder content. Sand is fine to coarse. Gravel is angular fine to		-	
				-		coarse.		2.0	
				-	<u>~0~</u> 8			-	
				-	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
				-	<u>~~~</u> 0			_	
2.50	B5			-				2.5	
2.50	D6			-				_	
				-				_	
				-				-	
				-	n n n n n n n n n n n n n n n n n n n			3.0	
				-	n n n n n n n n n n n n n n n n n n n			_	
			201.59	3.20	<u>~~</u> 0	End of trial pit at 3 20m		_	
				-				_	
				-				-	
				-				3.5	
				-				_	
				-				_	
				-				_	
				-				4.0	
				-				_	
				-				_	
				-					
				-				4.5	
				-				-	
				-				-	
				-				-	
				-				_	
				-					
Wate	r Strikes	Depth: 3.20	Rem	narks:					
Struck at (m)	Remarks	Width: 1.40							
1.00	1.80m	Length: 3.50							
Stability:			Termination Reason						
				vinated at ra	21/02/2024				
	Unstable		ierm	Terminated at refusal on boulders / possible bedrock. 21/0					

APPENDIX F TRIAL PIT PHOTOGRAPHS

Report No.: 23-1870

Trial Pit TP-MM-01

Report No.: 23-1870

Trial Pit TP-MM-01

Report No.: 23-1870

Trial Pit TP-MM-01

Trial Pit TP-MM-01

Report No.: 23-1870

Trial Pit TP-SC-01

Report No.: 23-1870

Trial Pit TP-SC-01

Trial Pit TP-SC-01

March 2024
Report No.: 23-1870

Report No.: 23-1870

Report No.: 23-1870

Trial Pit TP-SC-02

Report No.: 23-1870

Report No.: 23-1870

Trial Pit TP-SC-03

Trial Pit TP-SC-03

Report No.: 23-1870

Report No.: 23-1870

Trial Pit TP-SC-04

Report No.: 23-1870

Report No.: 23-1870

Trial Pit TP-SC-05

Report No.: 23-1870

Report No.: 23-1870

Report No.: 23-1870

Trial Pit TP-SC-06

Trial Pit TP-SC-06

Report No.: 23-1870

Trial Pit TP-T1-01

Report No.: 23-1870

Trial Pit TP-T1-01

Trial Pit TP-T1-01

Report No.: 23-1870

Trial Pit TP-T1-01

Report No.: 23-1870

Trial Pit TP-T2-01

Report No.: 23-1870

Trial Pit TP-T2-01

Trial Pit TP-T2-01

Report No.: 23-1870

Trial Pit TP-T3-01

Report No.: 23-1870

Trial Pit TP-T3-01

Trial Pit TP-T3-01

Report No.: 23-1870

Trial Pit TP-T3-01

Report No.: 23-1870

Trial Pit TP-T4-01

Report No.: 23-1870

Trial Pit TP-T4-01

Trial Pit TP-T4-01

Report No.: 23-1870

Trial Pit TP-T4-01

Report No.: 23-1870

Trial Pit TP-T5-01

Report No.: 23-1870

Trial Pit TP-T5-01

Report No.: 23-1870

Trial Pit TP-T5-01

Trial Pit TP-T5-01

Report No.: 23-1870

Trial Pit TP-T6-01

Report No.: 23-1870

Trial Pit TP-T6-01

Report No.: 23-1870

Trial Pit TP-T6-01

Trial Pit TP-T6-01

Report No.: 23-1870

Trial Pit TP-T7-01

Report No.: 23-1870

Trial Pit TP-T7-01

Report No.: 23-1870

Trial Pit TP-T7-01

Trial Pit TP-T7-01

APPENDIX G

INDIRECT IN-SITU CBR TEST RESULTS

Dynamic Cone Penetrometer (DCP) test results and estimated CBR

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP01	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Rain
			R

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 2.9	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
	Range	Max: >100

Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Dam O' ll'10-7.	December 2023

Dynamic Cone Penetrometer (DCP) test results and estimated CBR

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP02	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Rain
	· · · · · · · · · · · · · · · · · · ·		A

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 1.5	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR	
	Range	Max: >100	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	
observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 December 2023

 Director
 December 2023

Dynamic Cone Penetrometer (DCP) test results and estimated CBR

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP03	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Rain
			X

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

cumulative number of blows								top /				
		0	5 1	0 1	5 2	0 2	25 3	0 35		base of laver	mm/ blow	CBR (%)
	0									(mm)	biow	(70)
		-								0	N/A	N/A
	50	-							-	58		,
		-1							-	58	0.2	25
		1\								150	92	2.5
	100	1								150		
G		1							-	324	44	5.6
u u	150	-								-		
svel									-	324	12	22
l le									-	360		
rour	200									360	14	>100
00 ≱										378	1.4	>100
oelo	250								-	378		
th 1										379	0.1	>100
def		1										
	300 -											
		1 6							-			
	350	-										
		-	**************************************	* *								
		-			<u>^</u>	- <u>-</u>		×	-			
	400	_	1	1			1					

1	CBR	Min: 2.5	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
	Range	Max: >100	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 December 2023

 Director
 December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar	e	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP04	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Showers
			X

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 3.7	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximu shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blo				
	Range	Max: >100	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.			

Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Jam O luno 7.	December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar	e	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP05	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Showers
			A

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CI Rai	3R nge	Min: 11	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full
ка	nge	Max: 57	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Dam Or lero 7.	December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar	e	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP06	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Showers
•			A

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

cumulative number of blows					top /					
		0 20	4	0 60	0 8	0	100 120	base of	mm/	CBR (V/)
	0	₽╵╵╵						(mm)	DIOW	(%)
								0		
	100	ł I						64	N/A	N/A
	100									
		1 \						64	24	11
	200							300	24	11
								300	10	26
E E	300							432	10	20
<u> </u>										
svel	100							432	5.3	52
d le	400							827		
- un								027		
5 C	500							828	0.1	>100
MO								020		
bel										
ţ	600									
dep										
-										
	700									
		-								
	800									
	000	-								
	900	1								

Deviation(s) from standard procedure	None
Observations and comments	

 Darren O'Mahony
 Orn O UMO Director
 December 2023

Project Number	23-1870		
Project Name Lackareagh Wind Farm, Co Clare			
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP07	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Showers
			The second se

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	GRAVEL

CBR	Min: 4.9	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR	
Range	Max: 27	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.	

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Director

 Director
 December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar	e	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP08	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
			A

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 4.3	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing variation in moisture content or other factors may affect the insitu value.
Range	Max: >100	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Director

December 2023

Project Number	23-1870		
Project Name Lackareagh Wind Farm, Co Clare			
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP09	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
			X

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Min: 9.4 The self-weight penetration at the start of the test (shown above) has not h shown to the left. The selection of layers is based on visual interpretation of	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing variation in maintum content on other factors may affect the insitu value. Only, and the second seco	
Range	Max: 37	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	
	L

Approved Name and Appointment		
Darren O'Mahony Director	Dam O'lluay.	December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clare		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP10	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
			X

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 6.9	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
	Max: >100	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

Approved Name and Appointment		
Darren O'Mahony Director	Dam Or luno 7.	December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar	e	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP11	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
	+	-	T A

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 4.7	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
	Max: >100	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Dam O'dula 7.	December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP12	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
	•		X

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 8.5	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
Range	Max: 57	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Jam O'llung.	December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare		GEOTECH
		_	
Test Number	DCP13	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Showers
	•		X

Surface preparation	Description of surface material at test depth
N/A	GRAVEL

cumulative number of blows			top /	,				
		10 1	5	20	25 30	base of layer (mm)	mm/ blow	(%)
50						0 67	N/A	N/A
						67	- 98	2.4
100						165		
E 150						297	- 33	7.5
[] 10 200						297 364	17	15
round						364	7	39
an 250 Mola						420		
epth b						420	0.3	>100
ت 350							_	
400			× ×		×			
450							_	

CBR	Min: 2.4	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
Range	Max: >100	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

Approved Name and Appointment			
Darren O'Mahony Director	Dam O' luto 7.	December 2023	

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP14	Date Tested	12/12/2023
Depth bgl (m)	0.00	Weather	Showers
	•		T A

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	GRAVEL

cumulative number of blows				top /						
	0	0	5	10 1	5 2	0 2	5 30	base of layer	mm/ blow	CBR (%)
	0							(mm)		
	100							0 77	N/A	N/A
	200							77	25	10
	200	- - - -						371		
(um	300	-						538	33	7.4
l level (400	-						538 901	52	4.6
ground	500	-			R			901 948	16	16
below	600	-								
depth	700	-								
	800	-								
	000							 		
	900	-					×			
	1000	1	1		<u> </u>	<u> </u>				

CBR Range	Min: 4.6	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
	Max: 16	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Director

December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare	GEOTECH	
Test Number	DCP15	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
Depen bgi (iii)	0.00		

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 13	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and	
	Range	Max: 45	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

Approved Name and Appointment			
Darren O'Mahony Director	Dam O' luna 7.	December 2023	

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clare		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP16	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
		-	X

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 6.2	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
Range	Max: 32	values are valid at the time of testing; variation in moisture content of other factors may affect the institu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Director

December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare	GEOTECH	
Test Number	DCP17	Date Tested	13/12/2023
Depth bgl (m)	0.00	Weather	Dry
	•		X

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

cumulative number of blows			top /									
	0	0 1	0 2	20 3	30 4	10 5	0	0 7	0 80	base of laver	mm/ blow	CBR (%)
	0									(mm)		
	100									0 87	N/A	N/A
										07		
	200									280	24	10
6	300									280	14	19
un (
evel	400	1		*						780	5.5	50
nd lo	500									940		
grou	500	-										
MO	600	-		×								
ı bel	000	-										
epth	700											
р												
	800											
	900	1										
		1							×			
	1000	1									-	

CBR	Min: 10	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
Range	Max: 50	values are valid at the time of testing; variation in moisture content of other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Director

 Director
 December 2023

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare	GEOTECH	
Test Number	DCP18	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Dry
	<u> </u>		TA AND AND AND AND AND AND AND AND AND AN

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Jam O luno 7.	February 2024

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clar	е	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP19	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Dry
			TA AND AND AND AND AND AND AND AND AND AN

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 2	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full
	Max: >100	without the written approval of the laboratory.

Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Jam Or UND 7.	February 2024

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clar	e	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP20	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Dry
			A

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 2.2	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
Range	Max: 36	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Jan O Ulog

 Director
 February 2024

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clare	2	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP21	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Showers
			X

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 2.3	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR
Range	Max: 39	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Director

February 2024

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clare		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP22	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Showers
			The second se

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 3.5	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and
	Max: >100	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony
 Jun O UMO February 2024

 Director
 February 2024

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clare		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP23	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Showers
			R

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

	CBR Range	Min: 10 Max: >100	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full
	Max: >100	without the written approval of the laboratory.	

Deviation(s) from standard procedure	None
Observations and comments	

Approved Name and Appointment			
Darren O'Mahony Director	Dam O' luno 7.	February 2024	

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clare		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP24	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Showers
			No. 1

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR	Min: 3.4	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing variation in maintum content or other feature may affect the insitu value.
Range	Max: 48	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	
	L

	Approved Name and Appointment	
Darren O'Mahony Director	Dam O'llung.	February 2024

Project Number	23-1890		
Project Name	Lackareagh Wind Farm, Co Clar	e	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP25	Date Tested	25/01/2024
Depth bgl (m)	0.00	Weather	Showers
			X

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 4.5	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced excent in full
	Max: >100	without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Dam Or luno 7.	February 2024

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clare	2	
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP26	Date Tested	11/12/2023
Depth bgl (m)	0.00	Weather	Rain
			X

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range Max: 24 MIN: 5.5 Kown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/k values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Of interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced without the written approval of the laboratory

Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Jam Or le 10-7.	December 2023

Project Number	23-1870		
Project Name	Lackareagh Wind Farm, Co Clar		
Site Location	Lackareagh, Co Clare		GEOTECH
Test Number	DCP27	Date Tested	11/12/2023
Depth bgl (m)	0.00	Weather	Rain
		•	T A

Surface preparation	Description of surface material at test depth
N/A	TOPSOIL

CBR Range	Min: 5.7 Max: >100	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CE values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in fu
	Max: >100	without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment	
Darren O'Mahony Director	Dam O'lluo .	December 2023

APPENDIX H

GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE **Causeway Geotech Ltd** 8 Drumahiskey Road Ballymoney Co. Antrim, N. Ireland, BT53 7QL NI: +44 (0)28 276 66640

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd Unit 1 Fingal House

Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

> Registered in Ireland Company Number: 633786

w.causewaygeotech.com

12 March 2024

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Project Name:	Lackareagh Wind Farm
Project No.:	23-1870
Client:	МКО
Engineer:	Albert Fry

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 15/02/2024 and 12/03/2024.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

John Wolm

Stephen Watson Laboratory Manager Signed for and on behalf of Causeway Geotech Ltd

 Project Name:
 Lackareagh Wind Farm

 Report Reference:
 Schedule 1

 The table below details the tests carried out, the specifications used, and the number of tests included in this

 report. Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests.

The results contained in this report relate to the sample(s) as received. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report shall not be reproduced other than in full, without the prior written approval of the laboratory.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report		
SOIL	Water Content of Soil	BS 1377-2: 1990: Cl 3.2	14		
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	11		
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	12		
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	5		
ROCK	Point load index	ISRM Commission on Testing Methods. Suggested Method for Determining Point Load Strength 1985	5		
ROCK	Uniaxial Compressive Strength (UCS)*	ISRM Suggested Methods -Rock Characterization Testing and Monitoring, Ed. E T Brown - 1981	2		

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved subcontracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results Included in the report
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	pH Value of Soil		Ho -
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	Sulphate Content water extract		14

Summary of Classification Test Results														
Project No. 23-	-1870		Project	Name		Lac	karea	agh Wir	nd Farm					
	Sample								Passing		Gr	Ы	Particle	
Hole No.	Pof	Top	Paga	Turne	Specimen Description	bulk	dry		425µm		\sim		density	Casagrande Classification
	Rei	төр	Dase	туре		Mg/m	13	%	%	%	%	%	Mg/m3	Clabolitottion
TP-MM-01	4	1.50		D	Brown sandy slightly gravelly clayey SILT.			26	74	40 -1pt	29	11	191081	MI
TP-SC-01	2	1.00		D	Brown slightly sandy slightly clayey subangular fine to coarse GRAVEL.			9.9	32	31 -1pt	22	9		CL
TP-SC-02	4	1.60		D	Brown slightly sandy slightly clayey subangular fine to coarse GRAVEL.			11						
TP-SC-03	1	1.00		В	Brown sandy slightly gravelly clayey SILT.			18	38	38 -1pt	28	10		МІ
TP-SC-04	6	3.00		D	Brown sandy slightly gravelly silty CLAY.			7.8	27	34 -1pt	23	11		CL
TP-SC-05	3	2.00		В	Brown slightly sandy slightly clayey subangular fine to coarse GRAVEL.			16	37	32 -1pt	21	11		CL
TP-SC-06	4	2.00		D	Brown slightly sandy slightly silty subangular fine to coarse GRAVEL.			12	25	40 -1pt	28	12		МІ
TP-T1-01	6	2.50		D	Brown sandy gravelly silty CLAY.			14	49	27 -1pt	18	9		CL
TP-T2-01	4	1.00		D	Brown sandy slightly gravelly clayey SILT.			24	52	40 -1pt	29	11		МІ
TP-T3-01	4	1.70		D	Brown slightly sandy slightly clayey subangular fine to coarse GRAVEL.			11						
TP-T4-01	2	0.60		D	Brown sandy slightly gravelly clayey SILT.			31	42	71 -1pt	49	22		ΜV
TP-T5-01	3	1.70		В	Brown gravelly slightly clayey fine to coarse SAND.			3.9						
All tests perfor	med in a	iccordan	ce with E	3S1377:	1990 unless specified other	wise							LAE	3 01R Version 6
Key Density test Linear measurement unless : wd - water displacement				Liquid Lim 4pt cone u cas - Casa	nit Particle density unless : sp - small pyknometer agrande method gj - gas jar			Date Printed 03/12/2024 00:00			Appr	oved	By	
wi - immersion in water				1pt - single point test					Stephen Watsor					

	JSEW GEOTE	AY	Summary of Classification Test Results											
Project No.			Project	Name						•				
23-	1870	Sor				Lac	karea	agh Wir	nd Farm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>.</u>	-		
Hole No.	Ref	Тор	Base	Туре	Specimen Description	Dens bulk Mg/m	dry dry 13	W %	Passing 425µm %	LL %	%	PI	Particle density Mg/m3	Casagrande Classification
TP-T6-01	6	2.50		D	Brown sandy gravelly silty CLAY.			15	40	30 -1pt	22	8	19/08/r	CL
TP-T7-01	6	2.50		D	Brown sandy gravelly silty CLAY.			8.6	29	35 -1pt	24	11		CL/CI/ML/MI
All tests perfor	med in a	ccordan	ce with E	3S1377:1	1990 unless specified othe	rwise							LAE	01R Version 6
Key Density test Linear measurement unless : wd - water displacement			Liquid Lim 4pt cone u cas - Casa	I Limit Particle density one unless : sp - small pyknometer Casagrande method gj - gas jar			Date Printed 03/12/2024 00:00			Appr	oved	Ву		
wi - imm	ersion in w	ater		1pt - single	e point test						Step	hen	Watson	10122

Stephen Watson

LAB 05R - Version 6

10122

LAB 05R - Version 6

Approved

23

20

0.15

0.063

Stephen Watson

Approved

Stephen Watson

LAB 05R - Version 6

10122

LAB 05R - Version 6

10122

Approved

Stephen Watson

Remarks

Mg/m3

2.65

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

Approved

31

29

28

27

25

0.425

0.3 0.212

0.15

0.063

Stephen Watson

CAUSEWAY GEOTECH				Point Load Strength Index Tests Summary of Results														
Project No.	3-1870			Proje	ect Name	е			la	ckares	adh Wi	nd Far	n 📣					
Borehole	Sa	Sample		Specimen			Test Type (2) see ISRM		Dime	Dimensions		Force	it diameter,	Point Load Strength Index		Remarks		
No. Depth I	Ref.	Туре	Ref.	Depth	Rock Type	Type (D, A, I, B)	Direction (L, P or U)	Failure Va	Lne	W	Dps	Dps'	kN	B Equivale	Iso MPa	Is(5	water content if measured)	
RC-SC-01	5.00	1	с	2	5.00	GREYWACKE	D	U	YES	62.0	83.4	83.4	81.0	7.3	82.2	1.1	1.4	P
RC-SC-02	3.70	1	с	2	3.70	GREYWACKE	A	U	YES		83.5	110.0	104.0	10.5	105.2	0.9	1.3	
RC-SC-02	4.70	2	с	2	4.70	GREYWACKE	D	U	YES	54.7	83.5	83.5	81.0	19.0	82.2	2.8	3.5	
RC-SC-02	4.80	2	с	2	4.80	GREYWACKE	A	U	YES		83.4	63.5	64.0	11.1	82.4	1.6	2.0	
RC-SC-03	3.10	1	с	2	3.10	GREYWACKE	D	U	YES	80.3	83.3	83.3	81.0	7.0	82.1	1.0	1.3	
Test Type D - Diametral, A - Axial, I - Irregular Lump, B - Block Direction L - parallel to planes of weakness V - unknown or random Dimensions Dps - Distance between platens (platen separation) Dps - Length from platens to nearest free end W - Witth of shortest dimension perpendicular to load. P							P Dps											
Test performed in Detailed legend fo Size factor, F = ([Test performed in accordance with ISRM Suggested Methods : 1985, unless noted otherwise Detailed legend for test and dimensions, based on ISRM, is shown above. Size factor, F = (De/50)0.45 for all tests.							Date Printed Approved By										

CAL	VAY	U	UNIAXIAL COMPRESSION TEST ON ROCK - SUMMARY OF RESULTS											
Project No. 23-18	370	_	Projec	² roject Name Lackareagh Wind Farm A										
	Sample			ple Specimen					Water	Uniaxi	al Compre	ession3		
Hole No.	Ref	Тор	Base	Туре	Rock Type	Dia.	Length	H/D	Bulk Density2	Content 1	Condition	Mode of failure	JUCS	Remarks
	<u> </u>	<u> </u>				mm	mm		Mg/m3	%	26		MPap	22
RC-SC-01	2	4.10	4.40	С	GREYWACKE	83.3	238.0	2.9	2.69	0.6	received	S	38.2	T A
RC-SC-03	2	4.00	4.50	с	GREYWACKE	83.6	237.5	2.8	2.71	0.1	as received	F	77.5	
Notes 1 2 3	ISRM p ISRM p ISRM p ISRM p above	087 test 1, 086 clause 0153 part notes app	, water cor e (vii), Cal 1, determi	ntent at 1 iper metl ination o annotate	105 ± 3 oC, specimen a hod used for determina f Uniaxial Compressive ed otherwise in the rem	as tested f ation of bu e Strength narks	for UCS Ilk volume	and deriv f Rock Ma	ation of bulk	density	Mode of failu S - Single sh AC - Axial cle	re : ear eavage	MS - multiple F - Fragment	eshear
Test Specificati	on Interr	national	Societ	y for R	ock Mechanics, -	The cor	nplete I	SRM sı	uggested	Date Prir	ited	Approved	Ву	Table
methods for Rock Characterization Testing and Monitoring, 2007								03/04/20	024 00:00	Stepher	Watson	1 sheet 1		

Certificate Number 24-04533

Client Causeway Geotech 8 Drumahiskey Road Ballymoney County Antrim BT53 7QL

- Our Reference 24-04533
- Client Reference 23-1870
 - Order No (not supplied)
 - Contract Title LACKAREAGH WIND FARM, CO CLARE
 - Description 7 Soil samples.
 - Date Received 04-Mar-24
 - Date Started 04-Mar-24
- Date Completed 07-Mar-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Genood

Kirk Bridgewood General Manager

Issued: 07-Mar-24

Summary of Ch Soil Samples	emical A	naly	sis					NED. 20	S	
Client Ref 23-1870									0	
Contract Title LACKAREAG	H WIND FARM,	CO CLA	RE						20	
			Lab No	2307271	2307272	2307273	2307274	2307275	2307276	2307277
		.S	ample ID	TP-SC-01	TP-SC-02	TP-SC-03	TP-SC-04	TP-SC-05	TP-SC-06	TP-T5-01
			Depth	1.00	1.60	1.00	3.00	2.00	2.00	1.70
			Other ID							
		Sam	ple Type	SOIL						
		Samp	ling Date	01/03/2024	01/03/2024	01/03/2024	01/03/2024	01/03/2024	01/03/2024	01/03/2024
		Samp	ing Time	n/s						
Test	Method	LOD	Units							
Inorganics										
рН	DETSC 2008#		pН	7.6	6.6	6.4	6.2	5.8	6.2	6.3
Sulphate Aqueous Extract as SO4 (2)	1) DETSC 2076#	10	mg/l	1200	80	140	21	30	15	22

Information in Support of the Analytical Results

Our Ref 24-04533 Client Ref 23-1870 Contract LACKAREAGH WIND FARM, CO CLARE

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2307271	TP-SC-01 1.00 SOIL	01/03/24	PT 500ml		
2307272	TP-SC-02 1.60 SOIL	01/03/24	PT 500ml		
2307273	TP-SC-03 1.00 SOIL	01/03/24	PT 500ml		
2307274	TP-SC-04 3.00 SOIL	01/03/24	PT 500ml		
2307275	TP-SC-05 2.00 SOIL	01/03/24	PT 500ml		
2307276	TP-SC-06 2.00 SOIL	01/03/24	PT 500ml		
2307277	TP-T5-01 1.70 SOIL	01/03/24	PT 500ml		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

APPENDIX I

SPT HAMMER ENERGY MEASUREMENT REPORT

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing
Unit 11
Charlwoods Road
East Grinstead
West Sussex
RH19 2HU

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness t _r (mm):	6.7
Assumed Modulus E _a (GPa):	208
Accelerometer No.1:	64786
Accelerometer No.2:	64789

Hammer Mass m	(kg): 63.5
SPT Hammer Inf	formation $\mathcal{C}_{\mathcal{A}}$
Test Operator:	RWS
File Name:	1377spt
Report Date:	20/02/2023
Test Date:	18/02/2023
SPT Hammer Ref:	1377.

Falling Height	h (mm):	760
SPT String Len	gth L (m):	10.0

Comments / Location

CAUSEWAY

Calculations

Area of Rod A (mm2):		996	
Theoretical Energy E _{theor}	(J):	473	
Measured Energy E _{meas}	(J):	292	

Energy Ratio E_r (%):

The recommended calibration interval is 12 months

62

Signed: Bob Stewart Technician Title: